historia de los animales

lunes, 1 de diciembre de 2008

TRABAJO DE RECURSOSO NATURALES

LA MADERA
Madera
De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda

Superficie de una madera de un árbol de pino
Para otros usos de este término, véase Madera (desambiguación).
La madera es un material ortotrópico encontrado como principal contenido del tronco de un árbol. Los árboles se caracterizan por tener troncos que crecen cada año y que están compuestos por fibras de celulosa unidas con lignina. Las plantas que no producen madera son conocidas como herbáceas.
Como la madera la producen y utilizan las plantas con fines estructurales es un material muy resistente y gracias a esta característica y a su abundancia natural es utilizada ampliamente por los humanos, ya desde tiempos muy remotos.
Una vez cortada y seca, la madera se utiliza para muy diferentes aplicaciones. Una de ellas es la fabricación de pulpa o pasta, materia prima para hacer papel. Artistas y carpinteros tallan y unen trozos de madera con herramientas especiales, para fines prácticos o artísticos. La madera es también un material de construcción muy importante desde los comienzos de las construcciones humanas y continúa siéndolo hoy.
En la actualidad y desde principios de la revolución industrial muchos de los usos de la madera han sido cubiertos por metales o plásticos, sin embargo es un material apreciado por su belleza y por que puede reunir características que difícilmente se conjuntan en materiales artificiales.
La madera que se utiliza para alimentar el fuego se denomina leña y es una de las formas más simples de biomasa.
Contenido[ocultar]
1 La estructura de la madera
1.1 Duramen
1.2 Albura
1.3 Proceso de la madera
2 La composición de la madera
2.1 Celulosa
3 Función de la celulosa
3.1 Proceso de obtención de celulosa
3.1.1 Proceso de Kraft
3.1.2 Método de la sosa
3.1.3 Método del sulfito
4 Clasificación de los árboles
5 Partes de la madera
6 Anillos de crecimiento
7 Dureza de la madera
8 Proceso de obtención de la madera
9 Fabricación de tableros manufacturados
9.1 Aglomerados
9.1.1 Aglomerados de fibras orientadas
9.1.2 Aglomerado decorativo
9.1.3 Aglomerado de densidad graduada
9.1.4 Aglomerado de tres capas
9.1.5 Aglomerado de una capa
9.2 Contrachapado
9.3 Tableros de Fibras
9.3.1 Tableros semiduros
9.3.2 Tableros de Densidad Media
9.4 Chapas
10 Agentes nocivos de la madera
10.1 Agentes bióticos del deterioro
10.1.1 Requerimientos bióticos
10.1.2 La Humedad
10.1.3 El oxígeno
10.1.4 La temperatura
10.1.5 El alimento
10.1.6 Las bacterias
10.1.7 Los hongos
10.1.7.1 El moho y el hongo de la mancha
10.1.7.2 El hongo de la pudrición
10.1.8 Los insectos y crustáceos
10.1.8.1 Las termitas
10.1.8.2 Las termitas subterráneas
10.1.8.3 La termita de la madera húmeda
10.1.8.4 Las termitas de la madera seca
10.1.8.5 Los escarabajos
10.1.8.6 Los escarabajos pulverizadores de madera
10.1.8.7 El buprestido
10.1.8.8 El escarabajos de cuernos largos
10.1.8.9 Las hormigas, abejas y avispas
10.1.8.10 Las hormigas carpinteras
10.1.8.11 Las abejas carpinteras
10.1.8.12 Los perforadores marinos
10.1.8.13 Los polas
10.1.8.14 El gusano de barco
10.1.8.15 La Limnoria
10.2 Agentes físicos del deterioro
10.2.1 Los daños mecánicos
10.2.2 La degradación de luz ultravioleta
10.2.3 La corrosión
10.2.4 La degradación química
11 Enlaces externos
//

La estructura de la madera [editar]

Duramen [editar]
Parte de la madera localizada en la zona central del tronco. Representa la parte más antigua del árbol, tiende a ser de color oscuro y de mayor durabilidad natural.
Madera utilizada para la construcción de jaranas y otros instrumentos de son jarocho tales como la leona y el mosquito. El ámbar de la madera es precioso.
Madera madura. Albura modificada por cambios físicos y químicos
Es la madera dura que constituye la columna del árbolo. Es la antigua albura que se ha lignificado (celulas muertas)

Albura [editar]
Parte joven de la madera, corresponde a los últimos ciclos de crecimiento del árbol, suele ser de un color más claro y de menor durabilidad natural.

Proceso de la madera [editar]
La formación de la nueva madera en el tronco del árbol se lleva a cabo por una capa de células denominadas cambium, que está situada entre la corteza interna y la albura.
En la madera de más reciente formación (albura) tienen lugar dos importantes funciones, la conducción de la savia (desde la raíz a las hojas) y el almacenamiento.
Desde el punto de vista industrial, los materiales que interesan son el duramen y la albura, que adquieren el mismo color tras talar y dejar secar el árbol.
Luego el duramen y la albura se procesan y a través de varias maquinarias,la procesan aplanadoras y lijas industriales hasta llegar al producto(tablas en sí), también lápices , bates y mesas entre otros pero debemos tener en cuenta que la calidad de la dureza depende del mercado hacia donde va dirigido por el costo.

La composición de la madera [editar]
En composición media se compone de un 50% de carbono (C), un 42% de oxígeno (O), un 6% de hidrógeno (H) y el 2% de resto de nitrógeno (N) y otros elementos.
Todo esto se compone formando la celulosa y la lignina.

Celulosa [editar]
Es un polisacárido estructural formado por glucosa que forma parte de la pared de las células vegetales. Su fórmula empírica es (C6H10O5)n, con el valor mínimo de n = 200.
Sus funciones son las de servir de aguante a la planta y la de darle una protección vegetal. Es muy resistente a los agentes químicos, insoluble en casi todos los disolventes y además inalterable al aire seco, su temperatura de astillado a presión de un bar son aproximadamente unos 232,2 ºC.

Función de la celulosa [editar]

Enlaces de hidrógeno entre cadenas contiguas de celulosa
La celulosa es un polisacárido estructural en las plantas ya que forma parte de los tejidos de sostén. La pared de una célula vegetal joven contiene aproximadamente un 40% de celulosa; la madera un 50 %, mientras que el ejemplo más puro de celulosa es el algodón con un porcentaje mayor al 90%.
A pesar de que está formada por glucosas, los animales no pueden utilizar la celulosa como fuente de energía, ya que no cuentan con la enzima necesaria para romper los enlaces β-1,4-glucosídicos; sin embargo, es importante incluirla en la dieta humana (fibra dietética) porque al mezclarse con las heces, facilita la digestión y defecación, así como previene los malos gases.
En el intestino de los rumiantes, de otros herbívoros y de termitas, existen microorganismos, muchos metanógenos, que poseen una enzima llamada celulasa que rompe el enlace β-1,4-glucosídico y al hidrolizarse la molécula de celulosa quedan disponibles las glucosas como fuente de energía.
Hay microorganismos (bacterias y hongos) que viven libres y también son capaces de hidrolizar la celulosa. Tienen una gran importancia ecológica, pues reciclan materiales celulósicos como papel, cartón y madera. De entre ellos, es de destacar el hongo Trichoderma reesei, capaz de producir cuatro tipos de celulasas: las 1,4-β-D-glucancelobiohirolasas CBH i y CBH II y las endo-1,4-β-D-glucanasa EG I y EG II. Mediante técnicas biotecnológicas se producen esas enzimas que pueden usarse en el reciclado de papel, disminuyendo el coste económico y la contaminación.

Proceso de obtención de celulosa [editar]

Proceso de Kraft [editar]
Se trata con solución de sulfuro sódico e hidróxido sódico en relación 1:3 durante 2-6 h a temperaturas de 160 -170 ºC. Después, en ebullición, se añade sulfato sódico que posteriormente pasa a sulfuro sódico y se elimina.

Método de la sosa [editar]
Se usa hidróxido sódico para digerir el material.

Método del sulfito [editar]
Se digiere con solución de bisulfito cálcico con dióxido de azufre libre, y las ligninas se transforman en lignosulfonatos solubles.
En medio de esto se hace uno de los tres casos en la madera. Esta llega y es descortezada y chipeada, y echada a la caldera de acopio y de allí a una clasificación de lavado donde se selecciona y blanquea, más tarde se seca y embala. Los sobrantes van a silos que después se usarán para dar energía.

Clasificación de los árboles [editar]
Artículo principal: Árbol
Podemos clasificar a los árboles en dos tipos:
Árboles caducifolios: son los árboles en los que las hojas se caen en el otoño o invierno y vuelven a salir en la primavera. Los más característicos son: el roble, el almendro, el manzano y bastantes árboles frutales.
Árboles perennifolios: son por el contrario los que se caracterizan por mantener la hoja todo el año, es decir, que no se les caen las hojas. Los más característicos son: el pino, el ciprés, el abeto, el tejo... Estos árboles suelen proporcionar una madera más blanda que la de los caducifolios.

Partes de la madera [editar]
Corteza externa: es la capa más externa del árbol. Está formada por células muertas del mismo. Esta capa sirve de protección contra los agentes atmosféricos.
Cámbium: es la capa que sigue a la corteza y da origen a otras dos capas: la capa interior o capa de xilema, que forma la madera, y una capa exterior o capa de floema, que forma parte de la corteza.
Albura: es la madera de más reciente formación y por ella viajan la mayoría de los compuestos de la savia. Las células transportan la savia, que es una sustancia azucarada con la que algunos insectos se pueden alimentar. Es una capa más blanca porque por ahí viaja más savia que por el resto de la madera.
Duramen (o corazón): es la madera dura y consistente. Está formada por células fisiológicamente inactivas y se encuentra en el centro del árbol. Es más oscura que la albura y la savia ya no fluye por ella.

Anillos de crecimiento [editar]

Anillos de crecimiento en un tejo.
Los anillos de crecimiento indican varias cosas:
La edad del árbol. Cada anillo se forma por el crecimiento de una nueva capa de xilema, fenómeno que ocurre en los cambios de estación en las zonas geográficas en que éstos existen.
La dureza de la madera: madera dura tiene los anillos más próximos entre sí que la madera blanda.
Variaciones climáticas: si los anillos están muy juntos, esto puede indicar un periodo de sequía, en la cual el xilema no ha crecer mucho. Recíprocamente, si ha llovido mucho, entonces los anillos estarán más separados.
Los anillos de la madera se producen por el cámbium y el felógeno que forman la felodermis y el corcho o súber. [(Fuente: Asignaturas "Biología" de Preuniversitario y Selectivo, Plan 64)]

Dureza de la madera [editar]
Según su dureza, la madera se clasifica en:
Maderas duras: son aquellas que proceden de árboles de un crecimiento lento, por lo que son más densas y soportan mejor las inclemencias del tiempo, si se encuentran a la intemperie, que las blandas. Estas maderas proceden de árboles de hoja caduca, que tardan décadas, e incluso siglos, en alcanzar el grado de madurez suficiente para ser cortadas y poder ser empleadas en la elaboración de muebles o vigas de los caseríos o viviendas unifamiliares. Son mucho más caras que las blandas, debido a que su lento crecimiento provoca su escasez, pero son mucho más atractivas para construir muebles con ellas. También son muy empleadas para realizar tallas de madera.
Maderas blandas: el término madera blanda es una denominación genérica que sirve para englobar a la madera de los árboles pertenecientes a la orden de las coníferas. La gran ventaja que tienen respecto a las maderas duras, procedentes de especies de hoja caduca con un periodo de crecimiento mucho más largo, es su ligereza y su precio, mucho menor.Este tipo de madera no tiene una vida tan larga como las duras, pero puede ser empleada para trabajos específicos. Por ejemplo, la madera de cedro rojo tiene repelentes naturales contra plagas de insectos y hongos, de modo que es casi inmune a la putrefacción y a la descomposición, por lo que es muy utilizada en exteriores. La manipulación de las maderas blandas es mucho más sencilla, aunque tiene la desventaja de producir mayor cantidad de astillas. Además, la carencia de veteado de esta madera le resta atractivo, por lo que casi siempre es necesario pintarla, barnizarla o teñirla.

Proceso de obtención de la madera [editar]

Troncos para madera apilados, en las islas de Java.
Apeo, corte o tala: en este proceso intervienen los leñadores o la cuadrilla de operarios que suben al monte y con hachas o sierras eléctricas o de gasolina cortan el árbol y le quitan las ramas, raíces y empiezan a quitarle la corteza para que empiece a secarse. Se suele recomendar que los árboles se los corte en invierno u otoño. Es obligatorio replantar más árboles que los que se cortaron.
Transporte: es la segunda fase y es en la que la madera es transportada desde su lugar de corte al aserradero y en esta fase dependen muchas cosas como la orografía y la infraestuctura que haya. Normalmente se hace tirando con animales o maquinaria pero hay casos en que hay un río cerca y se aprovecha para que los lleve, si hay buena corriente de agua se sueltan los troncos con cuidado de que no se atasquen pero si hay poca corriente se atan haciendo balsas que se guían hasta donde haga falta.
Aserrado: en esta fase la madera es llevada a unos aserraderos. En los cuales se sigue más o menos ese proceso y el aserradero lo único que hace es dividir en trozos la madera según el uso que se le vaya a dar después. Suelen usar diferentes tipos de sierra como por ejemplo, la sierra alternativa, de cinta, circular ó con rodillos. Algunos aserraderos combinan varias de estas técnicas para mejorar la producción.
Secado: este es el proceso más importante para que la madera sea de calidad y esté en buen estado aunque si fallan los anteriores también fallara este.

Secado de la madera.
Secado natural: se colocan los maderos en pilas separadas del suelo y con huecos para que corra el aire entre ellos y protegidos del agua y el sol para que así se vayan secando.Lo que le pasa a este sistema es que tarda mucho tiempo y eso no es rentable al del aserradero que quiere que eso vaya deprisa.
Secado artificial: dentro de este hay varios métodos distintos:
Secado por inmersión: en este proceso se mete al tronco o el madero en una piscina, y por el empuje del agua por uno de los lados del madero la savia sale empujada por el lado opuesto así se consigue que al eliminar la savia la madera no se pudra; aunque prive a la madera de algo de dureza y consistencia, ganará en duración. Este proceso dura varios meses, tras los cuales la madera secará más deprisa porque no hay savia.
Secado al vacío: en este proceso la madera es introducida en unas maquinas de vacío. Es él más seguro y permite conciliar tiempos extremadamente breves de secado con además:
Bajas temperaturas de la madera en secado.
Limitados gradientes de humedad entre el exterior y la superficie.
La eliminación del riesgo de fisuras, hundimiento o alteración del color.
Fácil utilización.
Mantenimiento reducido de la instalación.
Secado por vaporización: este proceso es muy costoso pero bueno. Se meten los maderos en una nave cerrada a cierta altura del suelo por la que corre una nube de vapor de 80 a 100 ºC; con este proceso se consigue que la madera pierda un 25% de su peso en agua y más tarde para completar el proceso se le hace circular una corriente de vapor de aceite de alquitrán que la impermeabilizará y favorecerá su conservación.
Secado mixto: en este proceso se juntan el natural y el artificial: se empieza con un secado natural que elimina la humedad en un 20-25% para proseguir con el secado artificial hasta llegar al punto de secado o de eliminación de humedad deseado.
Secado por bomba de calor: este proceso es otra aplicación del sistema de secado por vaporización, con la a aplicación de la tecnología de "bomba de calor" al secado de la madera permite la utilización de un circuito cerrado de aire en el proceso, ya que al aprovecharse la posibilidad de condensación de agua por parte de la bomba de calor, de manera que no es necesaria la entrada de aire exterior para mantener la humedad relativa de la cámara de la nave ya que si no habría desfases de temperatura, humedad.
El circuito será el siguiente: el aire que ha pasado a través de la madera -frío y cargado de humedad- se hace pasar a través de una batería evaporadora -foco frío- por la que pasa el refrigerante (freón R-134a) en estado líquido a baja presión. El aire se enfría hasta que llegue al punto de roció y se condensa el agua que se ha separado de la madera. El calor cedido por el agua al pasar de estado vapor a estado líquido es recogido por el freón, que pasa a vapor a baja a presión. Este freón en estado gaseoso se hace pasar a través de un compresor, de manera que disponemos de freón en estado gaseoso y alta presión, y por lo tanto alta temperatura, que se aprovecha para calentar el mismo aire de secado y cerrar el ciclo. De esta manera disponemos de aire caliente y seco, que se vuelve a hacer pasar a través de la madera que está en el interior de la nave cerrada.
La gran importancia de este ciclo se debe a que al no hacer que entren grandes cantidades de aire exterior, no se rompa el equilibrio logrado por la madera, y no se producen tensiones, de manera que se logra un secado de alta calidad.

Fabricación de tableros manufacturados [editar]
Estos productos tienen cada vez más demanda en los talleres de carpintería y ebanistería para su trabajo diario. Los más cotidianos son:

Aglomerados [editar]
Se constituyen a partir de pequeñas virutas encoladas a presión en una proporción de 50% virutas y 50% cola. Se fabrican de diferentes tipos en función del tamaño de sus partículas, de su distribución por todo el tablero, así como por el adhesivo empleado para su fabricación. Por lo general se emplean maderas blandas más que duras por facilidad de trabajar con ellas, ya que es más fácil prensar blando que duro.
Los aglomerados son materiales estables y de consistencia uniforme, tienen superficies totalmente lisas y resultan aptos como bases para enchapados. Existe una amplia gama de estos tableros que van desde los de base de madera, papel ó laminados plásticos. La mayoría de los tableros aglomerados son relativamente frágiles y presentan menor resistencia a la tracción que los contrachapados debido a que los otros tienen capas superpuestas perpendicularmente de chapa que dan bastantes más aguante.
Estos tableros se ven afectados por el exceso de humedad, presentando dilatación en su grosor, dilatación que no se recupera con el secado. No obstante se fabrican modelos con alguna resistencia a condiciones de humedad.
Aunque de debe evitar el colocar tornillos por los cantos de este tipo de laminas, si fuese necesario, el diámetro de los tornillos no debe ser mayor a la cuarta parte del grosor del tablero, para evitar agrietamientos en el enchapado de las caras. Además hay diferentes tipos de aglomerado:

Aglomerados de fibras orientadas [editar]
Material de tres capas fabricado a base en virutas de gran tamaño, colocadas en direcciones transversales, simulando el efecto estructural del contrachapado.

Aglomerado decorativo [editar]
Se fabrica con caras de madera seleccionada, laminados plásticos o melamínicos. Para darle acabado a los cantos de estas laminas se comercializan cubrecantos que vienen con el mismo acabado de las caras.

Aglomerado de densidad graduada [editar]
Actúa bajo el mismo principio que la de tres capas, pero la diferencia es que la transición entre estas se da de manera gradual.

Aglomerado de tres capas [editar]
Tiene una placa núcleo formada por partículas grandes que van dispuestas entre dos capas de partículas más finas de alta densidad. Su superficie es más suave y recomendada para recibir pinturas.

Aglomerado de una capa [editar]
Se realiza a partir de partículas de tamaño semejante distribuidas de manera uniforme. Su superficie es relativamente basta. Es recomendable para enchapar pero no para pintar directamente sobre él.

Contrachapado [editar]
Un tablero ó lamina de madera maciza es relativamente inestable y experimentará movimientos de contracción y dilatación, de mayor manera en el sentido de las fibras de la madera, por ésta razón es probable que sufra distorsiones. Para contrarrestar este efecto, los contrachapados se construyen pegando las capas con las fibras transversalmente una sobre la otra, alternamente. La mayoría de los contrachapados están formados por un número impar de capas para formar una construcción equilibrada. Las capas exteriores de un tablero se denominan caras y la calidad de éstas se califica por un código de letras que utiliza la A como la de mejor calidad, la B como intermedia y la C como la de menor calidad. La cara de mejor calidad de un tablero se conoce como "cara anterior" y la de menor como "cara posterior" o reverso. Por otra parte la capa central se denomina "alma". Esto se hace para aumentar la resistencia del tablero o de la pieza que sé este haciendo.

Tableros de Fibras [editar]
Los tableros de fibras se construyen a partir de maderas que han sido reducidas a sus elementos fibrosos básicos y posteriormente reconstituidas para formar un material estable y homogéneo. Se fabrican de diferente densidad en función de la presión aplicada y el aglutinante empleado en su fabricación.
Se pueden dividir en dos tipos principales, los de alta densidad, que utilizan los aglutinantes presentes en la misma madera, que ha su vez se dividen en duros y semiduros, y los de densidad media, que se sirven de agentes químicos ajenos a la madera como aglutinante de las fibras.
Se dividen en varios tipos:

Tableros semiduros [editar]
Encontramos dos tipos de éstos tableros, los de baja densidad (DB) que oscilan entre 6mm y 12mm y se utilizan como recubrimientos y para paneles de control, y los de alta densidad (DA), que se utilizan para revestimientos de interiores.

Tableros de Densidad Media [editar]
Se trata de un tablero que tiene ambas caras lisas y que se fabrica mediante un proceso seco. Las fibras se encolan gracias a un adhesivo de resina sintética. Estos tableros pueden trabajarse como si se tratara de madera maciza. Constituyen una base excelente para enchapados y reciben bien las pinturas. Se fabrican en grosores entre 3mm y 32mm.

Chapas [editar]
Son láminas de maderas de buen color, dibujo y calidad pegadas a aglomerado o a otras maderas de mal color, dibujo y calidad, dando una pieza o mueble de buen aspecto en conjunto. Las chapas se extraen del tronco y suelen ser finas de tal modo que con un solo tronco se obtiene gran cantidad. Esta presentación de madera permite el trabajo de marquetería.

Agentes nocivos de la madera [editar]
El deterioro de la madera es un proceso que altera las características de ésta. En amplios términos, puede ser atribuida a dos causas primarias:
agentes bióticos (que viven)
agentes físicos (que no viven).
En la mayoría de los casos, el deterioro de la madera es una serie continua, donde las acciones de degradación son uno o más agentes que alteran las características de la madera al grado requerido para que otros agentes ataquen. La familiaridad del inspector con los agentes de deterioro es una de las ayudas más importantes para la inspección eficaz. Con este conocimiento, la inspección se puede acercar con una visión cuidadosa de los procesos implicados en el daño y los factores que favorecen o inhiben su desarrollo.

Agentes bióticos del deterioro [editar]
La madera es notablemente resistente al daño biológico, pero existe un número de organismos que han desarrollado la capacidad de utilizar la madera de una manera que altera sus características. Los organismos que atacan la madera incluyen: bacterias, hongos, insectos y perforadores marinos. Algunos de estos organismos utilizan la madera como fuente de alimento, mientras que otros la utilizan para el abrigo.

Requerimientos bióticos [editar]
Los agentes bióticos requieren ciertas condiciones para la supervivencia. Estos requisitos incluyen humedad, oxígeno disponible, temperaturas convenientes, y una fuente adecuada de alimento, que generalmente es la madera. Aunque el grado de dependencia de estos organismos varían entre diferentes requerimientos, cada uno de estos deben estar presente para que ocurra el deterioro. Cuando cualquier organismo se remueven de la madera, ésta se asegura de los ataques bióticos.

La Humedad [editar]
Aunque muchos usuarios de la madera hablan de la pudrición seca, el término es engañoso puesto que la madera debe contener agua para que ocurran los ataques biológicos. El contenido de agua en la madera es un factor determinante e importante de los tipos de organismos presentes que degradan la madera.
Generalmente, la madera bajo el punto de saturación de la fibra no se daña, aunque algunos hongos e insectos especializados pueden atacar la madera en los niveles de humedad mucho más bajos.
La humedad en la madera responde a varios propósitos en el proceso de la pudrición. Hongos e insectos requieren de muchos procesos metabólicos. Los hongos, también proporcionan un medio de difusión para que las enzimas degraden la estructura de la madera. Cuando el agua entra en la madera, la microestructura se hincha hasta alcanzar el punto de saturación de la fibra (sobre un 30% del contenido de humedad en la madera). En este punto, el agua libre en las cavidades de las células de la madera, el hongo puede comenzar a degradarla. La hinchazón asociada con el agua se cree que hace a la celulosa más accesible a las enzimas de los hongos, aumentando la velocidad de pudrición de la madera. Además, la repetida adherencia del agua, la sequedad o la continua exposición con la humedad pueden dar a lugar a una lixiviación de los extractos tóxicos y de algunos preservantes de la madera, reduciendo la resistencia al daño.

El oxígeno [editar]
Con la excepción de las bacterias anaeróbicas, todos los organismos requieren del oxígeno para su respiración. Mientras se priven de oxígeno puede parecerse una estrategia lógica para el control de la decadencia de la madera, puesto que la mayoría de los hongos pueden sobrevivir en niveles muy bajos de oxígeno. Una excepción está en sumergir totalmente la madera en agua. En ambientes marinos, se puede envolver en plástico o en concreto de modo que los perforadores marinos no puedan intercambiar los nutrientes ni el con el agua de mar circundante. En muchos casos, la madera no tratada decaerá en agua dulce, pero permanece la implicación submarina donde está ausente el oxígeno.

La temperatura [editar]
La mayoría de los organismos prospera en un rango óptimo de temperatura de 21 °C a 30 °C; sin embargo, son capaces de sobrevivir sobre una considerable gama de temperatura. En temperaturas bajo 0 °C, el metabolismo de la mayoría de los organismos se retarda. Mientras que la temperatura suba por encima de cero grados, ellos comienzan nuevamente a atacar la madera, pero la actividad se retarda rápidamente mientras que la temperatura se acerca a 32 °C.
En temperaturas sobre 32 °C, el crecimiento de la mayoría de los organismos declina, aunque un cierto de especies continúe extremadamente tolerante a prosperar hasta 40 °C. La mayoría de los organismos mueren a la exposición prolongada sobre este nivel, y generalmente se acepta que en 75 minutos de exposición a la temperatura de 65,6 °C todos los hongos que están establecidos en la madera decaen.

El alimento [editar]
La mayoría de los agentes bióticos que atacan la madera la usan como fuente de alimento. Cuando la madera esta tratada con preservantes, la fuente de alimento se envenena, y la infección puede ocurrir solamente donde el tratamiento está incorrecto. Si la madera expuesta es de una especie naturalmente durable tendrá inicialmente cierto grado de resistencia al ataque, pero esta resistencia será reducida rápidamente por el desgaste de la acción atmosférica y la lixiviación. Mantener un tratamiento preservativo eficaz es esencial para prevenir el ataque biótico.

Las bacterias [editar]
Las bacterias son pequeños organismos unicelulares que están entre los más comunes de la tierra. Se ha demostrado recientemente que son importantes en la infección de la madera no tratada expuesta en ambientes muy húmedos, causando aumento de la permeabilidad y ablandamiento en la superficie de la madera. La desintegración bacteriana es normalmente un proceso extremadamente lento, pero puede llegar a ser serio en situaciones donde la madera no tratada está sumergida por largos períodos. Muchas bacterias son también capaces de degradar los preservantes pudiendo modificar la madera tratada de una manera tal que ésta llegue a ser más susceptible químicamente a organismos que menos toleran. Aunque la pérdida significativa de la resistencia puede desarrollarse en los restos de la madera no tratada saturada por períodos muy largos, el decaimiento bacteriano no parece ser un peligro significativo en la madera tratada a presión usada típicamente para la construcción.

Los hongos [editar]
Los hongos son simples organismos que utilizan la madera como fuente de alimento. Se mueven a través de la madera como una red microscópica que crecen a través de los agujeros o directamente penetrando la pared celular de la madera. Las Hifas producen las enzimas que degradan la celulosa, hemicelulosa, o lignina que absorbe el material degradado para terminar el proceso de desintegración.
Una vez que el hongo obtiene una suficiente cantidad de energía de la madera, produce un cuerpo fructífero sexual o asexual para distribuir las esporas reproductivas que pueden invadir otras madera. Los cuerpos fructíferos varían de las esporas unicelulares producidas al final de las hifas para elaborar cuerpos fructíferos perennes que producen millones de esporas. Estas esporas son separadas extensamente por el viento, los insectos, y otros medios que pueden ser encontrados en la mayoría de las superficies expuestas. Consecuentemente, todas las estructuras de madera están conforme al ataque de los hongos cuando la humedad y otros requisitos adecuados al crecimiento de los hongos estén presentes.

El moho y el hongo de la mancha [editar]
El moho y el hongo de la mancha colonizan muy rápido la madera una vez que ésta se corta y continua su crecimiento mientras el contenido de humedad sigue siendo óptimo (sobre aproximadamente 25 por ciento para las maderas blandas). El efecto primario de estos hongos es manchar o descolorar la madera. Se consideran hongos inofensivos y son de consecuencia práctica sobre todo donde la madera se utiliza para sus calidades estéticas. El moho infecta la superficie de madera, causando los defectos que se pueden quitar generalmente con cepillo o cepillando, solamente las preocupaciones serias es del hongo de la mancha porque éstos penetran profundamente y descolora la madera. Bajo condiciones óptimas, algún hongo de la mancha puede también continuar a degradar la madera, causando disminución de la dureza y un aumento de permeabilidad; por lo tanto, la madera manchada es generalmente rechazada para las aplicaciones estructurales.
El moho y el hongo de la mancha utilizan el contenido de la célula de la madera para el alimento, y no degrada la pared celular. Pero su presencia puede indicar condiciones favorables para el desarrollo de otros hongos

El hongo de la pudrición [editar]
La pudrición en la madera es causada normalmente por el hongo de la pudrición. Este hongo se agrupa en tres amplias clases basadas en la forma del ataque y de la apariencia del material podrido. Los tres tipos de hongo de la pudrición son: el hongo de la pudrición parda, el hongo de la pudrición blanca, y el hongo de la pudrición suave.
Hongo de la pudrición parda, como el nombre lo indica, da a la madera un color parduzco. En etapas avanzadas, la madera descompuesta es frágil y tiene numerosas líneas cruzadas, similar a un aspecto de quemado. Las pudriciones pardas atacan sobre todo la celulosa y las fracciones de la hemicelulosa de la pared celular de la madera y modifican la lignina residual, causando pérdidas del peso de casi el 70 por ciento.
Debido que la celulosa proporciona la resistencia primaria a la pared celular, los hongos de la pudrición parda causan pérdidas substanciales de resistencia en las primeras etapas de pudrición. En este punto, la madera aparenta un daño leve y el hongo pueden haber quitado solamente 1 a 5 por ciento del peso de la madera, pero algunas características de la resistencia pueden ser desminuidas hasta un 60 por ciento.
De los tres tipos del hongo de la pudrición, las pudriciones pardas están entre las más serias debido a su patrón de ataque. Las enzimas producidas por estos hongos se desplazan o propagan lejos del punto donde las hifas del hongo están creciendo. Consecuentemente, la pérdida de resistencia en la madera puede ampliar una distancia substancial de las localizaciones en donde la pudrición puede ser detectada visiblemente.
Pudrición blanca producida por el hongo de la pudrición, se asemeja al aspecto normal de la madera, pero puede ser tan blanquecino o ligero en color con rayas oscuras. En las etapas avanzadas de la pudrición, la madera infectada tiene una textura suave distinta, y las fibras individuales se pueden desprender de la madera. Las pudriciones blancas diferencian de pudriciones pardas, en la que atacan los tres componentes de la pared celular de la madera, causando pérdida del peso de hasta 97 por ciento. En la mayoría de los casos, la pérdida asociada de resistencia es aproximadamente comparable a la pérdida del peso. Las enzimas producidas por el hongo de la pudrición blanca normalmente permanecen cerradas para el crecimiento de las hifas, y los efectos de la infección no son sensibles en las etapas tempranas de la pudrición.
Hongo de la pudrición suave es un grupo más recientemente reconocido que restringe su ataque a la superficie externa de la madera. Atacan típicamente a la madera muy húmeda, producida por las condiciones cambiantes de humedad, el ataque también puede ocurrir con poco oxígeno o en ambientes que inhiben el hongo de la pudrición. La mayoría de los hongos de la pudrición suave requieren de la adición de alimentos exógenos para causar el ataque substancial. Estos alimentos a menudo son proporcionados inadvertidamente por los fertilizantes en suelos agrícolas, restos de basura en torres de enfriamiento, y otras fuentes nutrientes. Aunque pueden ser encontrados en algunas situaciones, los hongos de la pudrición suave no se asocian normalmente a pérdidas significativas de la resistencia en los componentes de una estructura. Para propósitos descriptivos, el grado de daño en la madera se puede clasificar en tres etapas: incipiente, intermedia, y avanzado. El daño incipiente ocurre en el margen en que la infección avanza a nuevas partes, donde es difícil de detectar el daño porque no hay muestras visibles del ataque. Los cambios significativos en las características de la madera pueden ocurrir en las etapas incipientes. Mientras que el daño que incorpora la etapa intermedia, la madera se ablanda, se descolora, y se conserva poco.
En las etapas de daño avanzado, la madera no conserva virtualmente ninguna resistencia, se forman los bolsillos de pudrición, o la madera se disuelve literalmente. La detección del daño en la etapa inicial o incipiente es la más difícil, pero también la parte más importante de la inspección. A este punto, el daño puede ser efectivamente controlado para prevenir más daños severos a la estructura.

Los insectos y crustáceos [editar]
Los insectos están entre los organismos más comunes en la tierra, y no nos sorprende que un número de especies han desarrollado la capacidad de utilizar la madera para abrigo o alimento. De los 26 órdenes de insectos, 6 causan daño a la madera. Termitas (Isoptera), escarabajos (Coleoptera), abejas, avispas, y las hormigas (himenópteros) son las causas primarias de la mayoría de la destrucción en la madera.
El ataque del insecto es evidente generalmente desde túneles o cavidades en la madera, que contienen a menudo polvo o aserrín (heces del insecto) de madera. La presencia de polvo al pie de la madera o aserrín sobre la superficie de la madera, son muestras de un ataque.

Las termitas [editar]
Existen 2.000 especies de termitas que se distribuyen en áreas donde el promedio anual de temperatura es de 10 °C o superior. En algunos casos, las termitas prolongan su progresión en climas más frescos viviendo en estructuras cálidas hechas por el hombre. Atacan la mayoría de las especies de madera. Las termitas son insectos sociales, organizados en una serie de clases que realizan funciones especificas. El líder de la colonia es una reina cuyo único propósito es poner huevos. La reina es protegida por los soldados y es fortalecida y alimentada por las obreras, que también construyen el nido y causan el daño a la madera. Como todas las criaturas, las termitas tienen ciertos requisitos, incluyendo la madera de un alto contenido de humedad, una fuente conveniente de alimento, un alto nivel de dióxido de carbono, y el oxígeno. Las colonias de termitas se extienden en cantidad desde hasta un millón o más.

Las termitas subterráneas [editar]
Las termitas subterráneas (Rhinotermitidae) atacan implícitamente cualquier madera disponible, pero necesitan de una fuente de humedad y típicamente un nido en la tierra. Han desarrollado la capacidad de atacar a la madera sobre tierra construyendo tubos de tierra que los protegen contra la luz y llevan la humedad a la madera. La madera dañada por las termitas subterráneas tienen numerosos túneles a través de la madera de primavera pero no hay ningún orificio de salida a la superficie que indique la presencia de termitas. A menudo, un golpecito agudo en la superficie de la madera revelará que solamente hay una placa fina de restos de madera. Los túneles subterráneos de las termitas se llenan de una mezcla de restos y heces dando un aspecto sucio.

La termita de la madera húmeda [editar]
Las termitas de la madera húmeda son comunes en el Pacífico Noroeste, aunque un grupo es encontrado en el sudoeste más árido. La especie de la madera húmeda más común se encuentra a lo largo de la costa Pacífica del norte de California en la Columbia Británica. Como termitas subterráneas, las especies de la madera húmeda necesitan madera que este muy mojada, y su ataque se asocia a menudo con el daño. Estos insectos son un problema para la madera de construcción recién cortada, postes para uso general, y cualquier madera no tratada que esté en contacto con la tierra. Los túneles hechos por las termitas de la madera húmeda son bastante grandes, como la especie subterránea, tienden a evitar la madera de verano más dura. Los túneles contienen a menudo pequeñas cantidades de aserrín, sin embargo el aspecto de la madera algo más limpias son las atacadas por la especie subterránea. El ataque de la termita de la madera húmeda se puede prevenir o detener quitando la fuente de humedad o usando la madera tratada con preservante en las situaciones que requiere el contacto con la tierra.

Las termitas de la madera seca [editar]
Las termitas de la madera seca (Kalotermitidae) se diferencian de las termitas subterráneas de la madera húmeda por su capacidad de atacar la madera que es extremadamente seca; (5 a 6 por ciento de contenido de humedad). Como resultado, el ataque de las termitas de la madera seca no están en contacto con la tierra y también están lejos de fuentes visibles de humedad. Los daños en la madera por estos insectos, son largos túneles lisos que están libres de aserrín o de restos. Además, no hay variación de los ataques entre la madera de primavera y la madera de verano. Las termitas de la madera seca limpian con frecuencia el nido masticando las superficies del túnel, golpeando y echando hacia fuera los restos, en el cual la madera infectada se acumula abajo. Aunque los túneles se resellan, la presencia de restos debajo de la abertura es una buena señal de ataque. En general, los racimos de infecciones se encuentran en una área geográfica, y la prevención plantea una cierta dificultad. Mientras una infección ocurre, el uso de la fumigación estructural se ha generalizado para ser eficaz. Afortunadamente, la termita de la madera seca se confina en una región geográfica relativamente pequeña.

Los escarabajos [editar]
Los escarabajos (Coleóptero) representan el orden más grande de insectos que causan daño substancial a la madera. Muchos escarabajos atacan solamente a árboles vivos o cortan la madera fresca, pero son combatidos brevemente ya que sus daños pueden ser encontrados durante la inspección.

Los escarabajos pulverizadores de madera [editar]
Los escarabajos pulverizadores de madera son insectos que cuyas larvas atacan la madera, yéndose detrás de una serie de pequeños túneles embalados con excremento. Las tres familias de escarabajos pulverizadores de madera son el Anóbido, el Bostrícido, y el Líctido. Estos insectos causan serios daños a la madera y son un problema particular en museos, donde los artefactos de madera pueden pasar inadvertidos por largos períodos. El Anóbido y el Bostrícido atacan a las ramas muertas de la madera húmeda pero también atacaran a la madera no tratada. El daño es empeorado por los adultos que emergen reinfectando el mismo trozo de madera. El Líctido, o escarabajo pulverizador verdadero, se encuentra a través del mundo en maderas duras y ataca a ésta con un contenido de humedad sobre el 8 por ciento. Las larvas de estos escarabajos hacen el túnel, y además expulsan el excremento fuera de la madera. Estos excrementos se acumulan al pie de la madera afectada y es una buena muestra de la infección del pulverizador. El uso de tratamientos preservantes en la madera prevendrá la infección del Líctido. Sin embargo, el ataque del escarabajo pulverizador de madera puede convertirse en un problema, donde la madera no tratada es utilizada en estructuras existentes antiguas.

El buprestido [editar]
El Buprestido, también llamado cabeza plana o perforadores metálicos de la madera, son casi enteramente dependiente de los árboles que terminan su ciclo vital. Causan daño significativo atacando a los árboles vivos, dejando daños que puede ser evidentes en la madera de construcción u otros productos de la madera. Este escarabajo pone sus huevos en las superficies de la corteza o en las heridas del árbol. Sobre su curso de 1 a 3 años de sus ciclos vitales, las larvas hacen extensivamente un túnel en la madera, dejando galerías embaladas firmemente con sus excrementos. Las crisálidas maduras de las larvas y el adulto, mastican una escape a través de un agujero formando la salida. Además de las especies que atacan árboles vivos, una especie, el buprestido de oro (Buprestis aurulenta), es capaz de atacar un Abeto Douglas en servicio. Este escarabajo causa un serio daño a los postes de uso general, donde estos ataques a menudo están asociados con el daño extensivo.

El escarabajos de cuernos largos [editar]
Los escarabajos de cuernos largos (Cerambícidos) incluyen un número de degradadores de la madera que generalmente tienen antenas más largas que sus cuerpos. Atacan la madera en todas las condiciones, dependiendo de la especie, y causan daño substancial. Algunos, como el perforador del arce de azúcar y el perforador del álamo, atacan solamente a árboles vivos, matándolos y reduciendo eventualmente el valor de la madera. Otras especies atacan el Pino recientemente cortado, y degradando rápidamente la madera.
Un atacante interesante de la madera verde es el poderoso perforador, cuyas larvas atacan al Abeto Douglas y al Pino, produciendo túneles de casi una pulgada de diámetro. Aunque esta larva puede terminar su desarrollo en la madera aserrada, no reinfecta la madera experimentada.
Además de los escarabajos de cuernos largos que atacan la vida a árboles recientemente cosechados, varias especies causan daño a la madera en servicio. Otras especies, el perforador de casas viejas, es uno de los perforadores de madera más destructivos y prefiere la madera seca de coníferas.

Las hormigas, abejas y avispas [editar]
Las hormigas, abejas y avispas se incluyen colectivamente en el grupo de los Himenópteros.
Varios tipos de este grupo pueden atacar a la madera, pero aquí las discusiones se limitan a las hormigas y abejas carpinteras, porque estos dos grupos atacan a la madera en servicio.

Las hormigas carpinteras [editar]
Las hormigas carpinteras difieren de los insectos previamente discutidos, ya que utilizan la madera como refugio más bien que como alimento. Son insectos sociales con una organización compleja que gira alrededor de la reina. Para sostener a la colonia y para alzar sus jóvenes, las hormigas carpinteras obreras deben cubrir grandes distancias desde su nido para obtener el alimento, que puede consistir en secreciones de insectos, y fuentes azucaradas. Como la colonia crece de la reina original en unos 100.000 miembros, las obreras agrandan gradualmente su nido, causando serios daños internos en la madera.
Muchas colonias parecen preferir la madera que está sobre el punto de saturación de la fibra y que a menudo se asocia al daño interno. La madera dañada por las hormigas carpinteras es caracterizada por la presencia de túneles limpios de excrementos que se internan en gran parte en la madera joven, y que se extienden en paralelo a través de la fibra.
Mientras que las obreras atacan la madera, quitan grandes cantidades de excrementos fibrosos que recogen del trozo bajo ataque, la que proporciona una muestra fácil de identificar la infección. Las hormigas carpinteras se confunden a menudo con las termitas, pero hay varios métodos fáciles para distinguir el ataque de éstas dos especies.

Las abejas carpinteras [editar]
Como hormigas y abejas carpinteras utilizan la madera solamente para el refugio y para criar a sus jóvenes. En este proceso, hacen un túnel a lo largo de las fibras de las maderas coníferas, creando galerías de 13 a 46 cm de largo por 0,8 a 1 cm de ancho. Las abejas carpinteras parecen notablemente similares a los abejorros pero se diferencian levemente en la coloración. No son comunes, pero cuando ocurre la infección, los daños pueden ser serios.
Los adultos de esta especie hacen un túnel en la madera y ponen sus huevos en células individuales que son abastecidas con alimento para larvas crecientes. Los adultos emergen y pueden reinfectar la madera. Estos insectos también se han encontrado atacando la madera tratada con arsenicales inorgánicos en las retenciones sobre la tierra.

Los perforadores marinos [editar]
Cuando las subestructuras de la madera están situadas en aguas saladas, el daño severo puede ocurrir por el ataque de los perforadores marinos. Los perforadores marinos que causan el daño en la madera, se clasifican en tres grupos basados sobre su morfología y patrón de ataque a la madera: polas, gusano de barco, y Limnoria.

Los polas [editar]
Son moluscos, que se refugian en la madera y filtran el alimento del agua circundante. Comienzan la vida como minúsculas larvas de libre natación que se instalan eventualmente sobre una superficie favorable de la madera hasta establecerse permanentemente. Los polas crecen aproximadamente 64 mm de largo y deja un agujero de entrada en la superficie de la madera de cerca de 6 mm de diámetro. Mientras que los polas viven en la madera, la superficie eventualmente se debilita y tiende a romperse bajo la acción de la ola. El daño interno es generalmente identificable por la característica en forma de pera. Eventualmente, el área de la madera disminuye al punto donde éste falla. El ataque se puede prevenir con el uso de creosotados en la madera; sin embargo, otros organismos que degradan la madera en ambientes tropicales son resistentes a la creosota así que se requiere un tratamiento dual con creosota y un arsénico inorgánico flotante. En rocas de aguas templadas, la madriguera de los polas también causan daño a las estructuras de hormigón.

El gusano de barco [editar]
Los gusanos de barco son largos, los moluscos causan daño interno en la madera mientras que dejan solamente un agujero pequeño en la superficie como evidencia de su ataque. Como los polas, los gusanos de barco comienzan la vida como pequeñas larvas nadando libremente, después comienzan su vida sedentaria habitando en la madera. En el año 1700, los capitanes de barcos explotaron esta porción del ciclo vital navegando sus barcos de madera infectada en agua dulce donde los gusanos de barco atrapados morían por la carencia de sal.
Mientras que los gusanos de barco se establecen en la madera, con las tapas de sus cabezas comienzan a raspar la madera, haciendo un túnel con una característica capa blanca. El gusano de barco agranda gradualmente el túnel dentro de la madera, pero el agujero inicial agranda raramente más allá de 15 mm de diámetro. Para la seguridad de su madriguera en la madera, los gusanos de barco extienden un par de sifones plumosos en el agua circundante. Estos sifones funcionan de intercambio de alimentos, oxígeno, y de residuos. En cualquier muestra de peligro, los sifones son contraídos y el agujero superficial es cubierto por una plataforma endurecida que protege el organismo contra el ataque. La protección de la plataforma permite que el gusano de barco sobreviva en la madera fuera del agua por 7 a 10 días. El tamaño pequeño del agujero superficial y la presencia de la plataforma, hace la detección visual del ataque interno del gusano de barco, pero los avances en la detección acústica han mejorado las perspectivas de detectar infecciones antes de que ocurra el daño substancial.

La Limnoria [editar]
La Limnoria son crustáceos móviles que se diferencian de los gusanos de barco y de los polas en su habilidad de moverse de un tramo de madera a otros durante su ciclo de vida. Hay 20 especies de Limnoria que atacan la madera en aguas marinas, pero solamente 3 causan daños importantes. Dos de éstas especies son capaces de atacar solamente la madera sin tratamiento, pero la otra especie ataca la madera tratada con cerosota. Los especimenes de esta especie se han removido de la madera creosotada y el preservante se puede exprimir literalmente de sus cuerpos, con todo eso continúan atacando la madera. Esta resistencia notable ha fascinado y dificultado a científicos, quienes tendrán que desarrollar una explicación loable para este fenómeno.
La Limnoria daña la madera con su madriguera de pequeño diámetro (30 mm), la cual hace un túnel cerca de la superficie. Aunque el daño es mínimo, el retiro continuado de madera debilitada por la acción de la ola, expone a la madera nueva al ataque. Eventualmente, el área de madera se reduce al punto donde la estructura falla o debe ser substituida. Una muestra clásica del ataque de la Limnoria es de forma de reloj de arena que ataca seriamente el trozo tomado sobre la zona de marea; sin embargo, el ataque puede y se extiende a la línea de fango, si el oxígeno y las condiciones de salinidad son convenientes.

Agentes físicos del deterioro [editar]
Aunque el deterioro de la madera se ve tradicionalmente como proceso biológico, la madera se puede también degradar por los agentes físicos. Los agentes son generalmente de actuar lento, pero pueden llegar a ser absolutamente serios en localizaciones específicas. Los agentes físicos incluyen abrasión mecánica o impacto, luz ultravioleta, subproductos de corrosión del metal, y ácidos o bases fuertes. El daño por los agentes físicos se puede confundir por ataque biótico, pero la carencia de muestras visibles de los hongos, insectos, o perforadores marinos, más el aspecto general de la madera, puede advertir al inspector por la naturaleza del daño. Aunque destructivo en sus derechos propios, los agentes físicos pueden también dañar el tratamiento de preservación, y exponer a la madera no tratada al ataque de los agentes bióticos.

Los daños mecánicos [editar]
Los daños mecánicos son probablemente el agente físico más significativo del deterioro del puente de madera. Es causado por un número de factores y, considerablemente varios en sus efectos sobre la estructura. Los daños mecánicos más comunes es la abrasión del vehículo, que produce superficies gastadas o estropeadas y reduce la sección de la madera. Los ejemplos obvios de este daño ocurren en el área de la cubierta del puente donde la abrasión produce la degradación de la superficie. Un daño mecánico más severo puede ser causado por la exposición a largo plazo a las sobrecargas del vehículo, a las instalaciones de fundación, a cataclismos o a témpanos de hielo en la corriente de un canal.

La degradación de luz ultravioleta [editar]
Es el deterioro más visible en la madera, resulta de la acción ultravioleta del sol que químicamente degrada la lignina cerca de la superficie de la madera. La degradación ultravioleta típicamente hace a las maderas ligeras obscurecer y acelerar a las maderas oscuras, pero estos daños penetran solamente a una distancia corta debajo de la superficie.
La madera dañada es levemente más débil, pero la baja profundidad del daño hace que influya poco sobre la resistencia a menos que se retire el trozo de madera donde está dañada reduciendo eventualmente las dimensiones de la pieza...

La corrosión [editar]
La degradación de la madera por la corrosión del metal, frecuentemente se pasa por alto como una causa de deterioro de una estructura. Este tipo de degradación puede ser revelador en algunas situaciones, particularmente en ambientes marinos donde las células galvánicas del agua salada forman y acelera la corrosión. La degradación comienza cuando la humedad en la madera reacciona con el hierro en un mecanismo de unión, lanzando iones férricos alternadamente, deteriorando la pared celular de la madera.
Mientras que progresa la corrosión, el mecanismo de unión se convierte en una pila electrolítica con un extremo ácido (ánodo) y un extremo alcalino (cátodo). Aunque las condiciones del cátodo no son severas, la acidez del ánodo causa la hidrólisis de la celulosa y reduce seriamente la resistencia de la madera en la zona afectada. La madera atacada de esta manera es a menudo oscura y se presenta suave. En muchas especies de maderas, la descoloración también ocurre donde el metal entra en contacto con el corazón de ésta.
Además del deterioro causada por la corrosión, las alta condiciones de humedad asociadas a este daño pueden favorecer inicialmente el desarrollo del hongo de pudrición. Como progresa la corrosión, la toxicidad de los iones del metal y el pH bajo en la madera, elimina eventualmente los hongos de la zona afectada, aunque la pudrición puede continuar a una cierta distancia del mecanismo de unión. El efecto de la corrosión del metal en la madera puede ser limitado usando uniones galvanizadas o de un material que no sea metálico.

La degradación química [editar]
En casos aislados, la presencia de fuertes ácidos o bases pueden causar daño substancial a la madera. Las bases fuertes atacan la hemicelulosa y la lignina, saliendo de la madera un color blanco descolorado. Los fuertes ácidos atacan la celulosa y la hemicelulosa, causando pérdidas de peso y de resistencia. La madera dañada por el ácido es de color oscuro y su aspecto es similar a la de la madera dañada por el fuego. Los fuertes productos químicos no entrarán en contacto normalmente con un puente de madera a menos que ocurran derrames accidentales.
EL CARBON
EL CARBÓN MINERAL
La carbonificación
La carbonificación es el proceso geológico de formación de materiales con contenido creciente en carbono (turbas y carbones minerales) a partir de materiales orgánicos que se encuentran en la corteza terrestre por transformación gradual a temperaturas moderadas (alrededor de 250 ºC) y a alta presión. La carbonificación es un proceso de deshidrogenación incompleta, con una cinética muchísimo más lenta que la de la carbonización (eliminación de los volátiles de la materia orgánica por calentamiento en ausencia de aire). La carbonificación no es una fosilización ya que en el caso de la fosilización la materia orgánica se sustituye gradualmente por materia mineral mientras que en el caso de la carbonización el carbón mineral resultante sigue siendo un compuesto orgánico.

En la carbonificación existen dos grandes etapas: la diagénesis, en la que tiene lugar descomposición de la materia orgánica por las bacterias hasta formar la turba y el metamorfismo en el que se continúa la carbonificación por la acción del calor y la presión. Durante la diagénesis ocurren procesos de descomposición de la materia orgánica debido al ataque de las bacterias aeróbicas, lo que sucede cuando los restos vegetales están cubiertos parcialmente por agua, o a poca profundidad, donde aún hay oxígeno para que puedan existir estas bacterias. Durante esta etapa se produce una reducción de volumen de hasta un 50%. Una vez que las bacterias consumen todo el oxígeno esta etapa finaliza y comienza la descomposición de la materia orgánica restante por las bacterias anaeróbicas. En esta etapa continúa la descomposición de la materia orgánica produciéndose ácidos húmicos, los cuales van acidificando el medio hasta llegar a un pH 4, en el cual mueren las bacterias anaeróbicas. De esta forma se forma la turba sobre la cual se van depositando más restos vegetales que a su vez forman más turba, lo que hace que la temperatura de las capas inferiores vaya aumentando comenzando las transformaciones por metamorfismo cuando la temperatura alcanza los 100 ºC. Con el transcurso de miles de años, más acumulaciones de turba y sedimentos van enterrando cada vez más el carbón mineral que se está formando. Debido al aumento de la temperatura y la presión, el carbón mineral va evolucionando desde el lignito hasta la antracita, liberándose gases, sustancias volátiles y aceites, y enriqueciéndose cada vez más en carbono.
Formación del carbón mineral
La gran mayoría de los depósitos de carbón mineral se formaron durante el período geológico del Carbonífero. Otros depósitos importantes se formaron durante el Pérmico. Existen también depósitos, menos abundantes pero significantes, formados durante el Triásico y el Jurásico y en menor cantidad en el Cretácico.



La formación del carbón y el diluvio universal
El origen y formación del carbón mineral ha dado lugar a un controvertido debate, que aun permanece, entre los evolucionistas (que explican la formación del carbón a partir de una acumulación orgánica natural como turberas, marismas, pantanos etc., que fueron paulatinamente cubiertos por estratos de sedimentos, sufriendo posteriormente un proceso de carbonificación durante millones de años) y los creacionistas (los cuales sugieren que la mayoría del carbón se desarrolló a partir de materia vegetal transportada de otras partes, y que provenía de materias vegetales arrastrados durante una catástrofe de gran envergadura a nivel mundial, como fue el diluvio universal de Noé).
Algunos de los argumentos a favor y en contra de la teoría de la acumulación gradual (teoría evolucionista) y la sepultura catastrófica (teoría creacionista) se resumen a continuación.
Creacionista. Presencia de restos de árboles que no crecen en ambientes pantanosos.
Evolucionista. Reconoce la formación, pero solo en algunos yacimientos, de ciertos depósitos de sedimentos transportados de otros lugares, junto con la formación por acumulación gradual.
Creacionista. Presencia de fósiles de animales marinos muy bien conservados que no han experimentado el mismo grado de descomposición que el carbón.
Evolucionista. Presencia de fósiles de distintas épocas desde el carbonífero hasta el cretácico incluyendo alguna huella de dinosaurio. Ausencia de fósiles o restos de ningún animal que fuese contemporáneo de Noé.
Huellas de distintos dinosaurios encontradas en una mina de carbón den Utah
Creacionista. Existencia de yacimientos con capas de muchos metros de espesor (algunos de hasta 100 ó más metros ) que requerirían de grandes acumulaciones de materia vegetal traída de otra parte. Según los creacionistas serían necesarios unos 12 metros de restos de vegetación acumulada para producir una capa de carbón de 1 metro de espesor. Por otro lado, asume que en condiciones adecuadas de presión y temperatura los restos vegetales no necesitan de mucho tiempo para evolucionar a carbón. Otro argumento esgrimido por los creacionistas a favor de la rápida acumulación y carbonificación es que, si el cálculo se hace en términos energéticos, se estima que 128 años de energía solar acumulada en las plantas por fotosíntesis serían equivalentes a la energía acumulada en los yacimientos de carbón conocidos.
Evolucionista. Sostienen que la proporción necesaria de restos vegetales acumulados frente a al espesor de una capa de carbón es menor de 2:1 y muy cercana a 1:1. Por otro lado, en muchos carbones bituminosos se observa un bajo contenido en cenizas, lo que los hace incompatibles con un origen por arrastre de depósitos masivos de materia orgánica necesariamente mezclados con materia inorgánica.

Rango de los carbones minerales
Existen diferentes tipos de carbones minerales en función del grado de carbonificación que haya experimentado la materia vegetal que originó el carbón. Estos van desde la turba, que es el menos evolucionado y en que la materia vegetal muestra poca alteración, hasta la antracita, que es el carbón mineral con una mayor evolución. Esta evolución depende de la edad del carbón, así como de la profundidad y condiciones de presión, temperatura, entorno, etc. en las cuales la materia vegetal evolucionó hasta formar el carbón mineral. El rango de un carbón mineral se determina en función de criterios tales como su contenido en materia volátil, contenido en carbono fijo, humedad, poder calorífico etc. Así, a mayor rango, mayor es el contenido en carbono fijo y mayor el poder calorífico, mientras que disminuyen su humedad natural y la cantidad de materia volátil. Existen varias clasificaciones de los carbones según su rango. Una de las más utilizadas divide a los carbones de mayor a menor rango en: antracita, bituminoso bajo en volátiles, bituminoso medio en volátiles, bituminoso alto en volátiles, sub-bituminoso, lignito y turba. La hulla es un carbón mineral de tipo bituminoso medio y alto en volátiles. En cuanto a los parámetros de rango estos también pueden variar de una clasificación a otra, aunque unos valores promedio podrían ser los que figuran en la siguiente Tabla.
RANGO
C fijo

(%)
Humedad

( %)
Materia Volátil
( %)
Poder calorífico
(MJ/kg)
Antracita


86 - 98
< 3
< 5
23 -33
Bituminoso
(Hulla)
(bajo, medio y alto en volátiles)

45 - 86
5 - 10
10 - 30
24-35
Sub-bituminoso

35 - 45
15 - 30
30 - 40
20-21
Lignito

25 - 42
40 - 60
40 - 50
10-20
Turba

< 25




Antracita. Las antracitas datan de los periodos Carbonífero y Pérmico de la era primaria, hace unos 250 millones de años. Es el carbón mineral de más alto rango y el que presenta mayor contenido en carbono. Sin embargo, su poder calorífico es, en general, inferior al de los carbones bituminosos debido a su bajo contenido en materia volátil. La antracita presenta una ignición difícil, pero arde dando una llama azul corta y sin apenas humos. La antracita presenta una mayor dureza, densidad y brillo que el carbón bituminoso.
Carbón Bituminoso. Existen carbones bituminosos que datan de los periodos Jurásico, Triásico, Pérmico y Carbonífero. Es un carbón mineral denso de color negro o marrón oscuro, se utiliza para su combustión en centrales térmicas y para la producción de coque metalúrgico. La hulla pertenece a este tipo de carbón bituminoso, con contenidos alto y medio en volátiles.
Carbón Sub-Bituminoso. Estos carbones presentan propiedades intermedias entre las del lignito y los carbones bituminosos. Normalmente se utilizan en centrales térmicas para la producción de energía.
Lignito. Es de rango inferior al de los carbones sub-bituminosos, y por lo general, presenta un color marrón oscuro por lo que se les denomina a veces lignitos pardos. Se usan principalmente en la producción de energía en centrales térmicas. Una variedad de Lignito muy particular es el azabache, que es muy apreciado en joyería y considerado como una piedra semipreciosa.
Turba. La turba es un material orgánico compacto, de color pardo oscuro y rico en carbono. La formación de turba constituye la primera etapa del proceso por el que la vegetación se transforma en carbón mineral. Se forma como resultado de la putrefacción y carbonización parciales de la vegetación en el agua ácida de las turberas. La formación de una turbera es relativamente lenta como consecuencia de una escasa actividad microbiana, debida a la acidez del agua o la baja concentración de oxígeno. El paso de los años va produciendo una acumulación de turba que puede alcanzar varios metros de espesor, a un ritmo de crecimiento que se calcula de entre medio y diez centímetros cada cien años. En estado fresco alcanza hasta un 98% de humedad, pero una vez desecada puede usarse como combustible. La turba también se usa en jardinería para mejorar suelos por su capacidad de retención de agua.
Mina de carbón a cielo abierto en Fabero del Bierzo (España)

Principales usos de los carbones minerales
Algunos historiadores creen que el carbón comenzó a utilizarse comercialmente en China. Hay indicios de una mina situada en el noroeste de China que suministraba carbón para fundiciones de cobre y para la fabricación de monedas hacia el año 1000 AC. Una de las primeras referencias al carbón fue realizada por el filósofo griego Aristóteles, que hacía referencia a una roca similar al carbón vegetal. Se han encontrado restos de carbón entre las ruinas romanas en Inglaterra, lo que indica que los romanos utilizaban la energía del carbón desde antes del 400 DC. En las crónicas de la Edad Media se habla de la extracción de carbón en Europa, e incluso del comercio internacional desde las costas inglesas hacia Bélgica. Fue durante la revolución industrial en los siglos XVIII y XIX cuando aumentó la demanda de carbón. Las mejoras en el motor de vapor de James Watt, patentado en 1769, fueron las responsables principales del crecimiento del uso del carbón. La historia de la extracción y el uso del carbón está totalmente vinculada a la de la revolución industrial: la producción de acero, el ferrocarril y los barcos a vapor. El carbón también se utilizó para producir gas para iluminar muchas ciudades, lo que se denominó el “gas ciudad”. Este proceso de gasificación vio el crecimiento del uso de la luz de gas en zonas metropolitanas a comienzos del siglo XIX, especialmente en Londres. El uso del gas de carbón en la iluminación de las calles acabó siendo sustituido tras la irrupción de la era industrial. Con el desarrollo de la energía eléctrica en el siglo XIX, el futuro del carbón fue acercándose a la generación de electricidad. La primera central eléctrica de combustión de carbón mineral, desarrollada por Thomas Edison, entró en funcionamiento en Nueva York en 1882, proporcionando electricidad a las luces domésticas.
La gran mayoría de los carbones minerales se destinan a la producción de energía eléctrica en centrales térmicas. También se utiliza como combustible para la producción de energía térmica en hornos, calefacciones, etc. Sin embargo este uso ha venido perdiendo importancia debido a la utilización de otro tipo de combustibles, como los derivados del petróleo o los derivados de la biomasa. Otro de los usos mayoritarios de los carbones, especialmente de la hulla y carbones bituminosos (carbones coquizables), es la producción de coque metalúrgico, usado para la obtención de arrabio en el alto horno y en otras industrias metalúrgicas. Durante el proceso de coquización también se obtiene, además del coque, la brea de alquitrán de hulla. Una gran parte de las breas son utilizadas, junto con el coque de petróleo, en la producción de electrodos para la industria del aluminio y electrodos para hornos de arco eléctrico. Las breas de alquitrán de hulla también pueden ser usadas como precursores del grafito sintético, fibras de carbono y materiales compuestos C/C. Algunos productos químicos pueden producirse a partir de subproductos obtenidos durante la coquización como la creosota, la naftalina, el fenol y el benceno. El gas de amoníaco recuperado de los hornos de coque se utiliza para fabricar sales de amoníaco, ácido nítrico y fertilizantes agrícolas. La gasificación de algunos carbones minerales da lugar a la producción de distintos tipos de gases que pueden utilizarse como combustible o en la fabricación de diversos compuestos químicos. En ciertos países el carbón se convierte en combustibles líquidos, a este proceso se le denomina licuefacción. El combustible líquido puede refinarse para producir combustible de transporte y otros productos similares a los derivados del petróleo, como plásticos y disolventes. Existen dos métodos principales de licuefacción: la licuefacción directa de carbón, en la que el carbón se convierte en combustible líquido en un único proceso y la licuefacción indirecta de carbón, en la que el carbón primero se gasifica y después se convierte en líquido. Por otro lado, los carbones no coquizables (o los coquizables cuando se les eliminan sus propiedades plásticas mediante un proceso de oxidación) pueden someterse a procesos de carbonización/activación, obteniéndose carbón activo. Aunque no de forma mayoritaria, el carbón mineral también puede usarse en muchas otras aplicaciones, como por ejemplo la fabricación de espumas de carbono.

Libro electrónico
EL CARBÓN COMO RECURSO: UNA VISIÓN GENERAL DEL CARBÓN
(Una publicación en Español del Word Coal Institue, PDF 4.5 Mb)



¿Por qué los Reyes Magos dejan carbón a los niños que se portan mal?
La tradición dice que los Reyes Magos dejaban carbón, en vez de juguetes, a los niños que se han portado mal durante el año. Así es como los Reyes Magos se burlaban de los niños malos, dejándoles algo que ya podía encontrar en la chimenea de su casa. Con el paso de los años el carbón se sustituyó por carbón de azúcar, una golosina que presenta el aspecto del carbón natural. Incluso es costumbre regalar carbón dulce a los niños que se han portado bien, como recordatorio o advertencia de lo que puede pasar si durante el año siguiente no se comportan como deben.
Carbón dulce hecho de azúcar
El origen de esta tradición parece estar en el Carbonilla, un personaje de la mitología de Navidad. Éste, supuestamente, sería uno de los pajes de los Reyes Magos, encargado de vigilar a los niños durante todo el año para saber si han sido buenos o malos. Carbonilla sería el encargado de decir a los Reyes Magos, y con el paso de los años también a Santa Claus, qué niños merecían juguetes y cuáles no. Por eso, cada vez que un niño se portaba mal, los padres le advertían que en lugar de los Reyes o Santa Claus, le visitaría Carbonilla y que le traería carbón en lugar de sus juguetes.
En Italia, existe la leyenda de la bruja Befana. La tradición la sitúa barriendo su casa con su escoba cuando pasaron los Reyes Magos hacia Belén y la invitaron a ir con ellos. Ella no los acompañó y, como muestra de arrepentimiento, la bruja está en continua búsqueda del niño Jesús. En las casas italianas cuelgan un calcetín en la chimenea y la Befana lo llenará de regalos si los niños se han portado bien, o de carbón, si su comportamiento no ha sido el adecuado.
En la zona de Lesaka, en Navarra, existía la tradición del Olentzero, un carbonero que vivía en el monte y al que no le gustaban nada los niños. En el siglo XX la figura de Olentzero incorporó elementos de las tradiciones de Papá, Noel-Santa Claus y de los Reyes Magos, convirtiéndose en un personaje que el día de Navidad trae regalos a los niños de muchas familias de Navarra y el País Vasco.
Otra explicación de esta tradición es que un primer momento los obsequios de los Reyes Magos se limitaban a necesidades de la vida cotidiana, las cuales incluían el carbón. Así, Melchor se encargaba de regalar ropa o zapatos; Gaspar repartía golosinas, requesón, miel o frutos secos y Baltasar cumplía la función de el malo del grupo, castigando a los niños que se habían portado mal, dejándoles carbón o leña.


El micrófono de carbón
El micrófono de carbón, también denominado micrófono de botón del carbón o transmisor de carbón. Consiste en un compartimento que contiene dos placas de metal separadas por gránulos de carbón (normalmente antracita, o a veces grafito). La placa externa actúa como tapa y diafragma, de forma que cuando las ondas acústicas inciden en esta fina lámina metálica, ésta empuja a las partículas de carbón, provocando una variación en la presión de los gránulos, lo que a su vez produce un cambio de la resistencia eléctrica entre las placas. Una presión más alta compacta los gránulos, disminuyendo la resistencia eléctrica y viceversa. Al hacer pasar corriente eléctrica entre estas dos placas, esta sufre una variación en su intensidad debido al cambio de la resistencia entre las placas. Estas diferencias en intensidad de corriente se pueden transmitir mediante un sistema de teléfono, o bien utilizarse en otros sistemas electrónicos que transforman el sonido en una señal eléctrica.
Despiece de un micrófono de carbón y detalle del compartimento que contiene los granos de carbón
El micrófono de carbón (llamado entonces transmisor) fue patentado por Thomas Alva Edison en marzo de 1878. No obstante, Emile Berliner también solicitó dos patentes relacionadas con esta invención en junio de 1877 y agosto de 1879. Ambos se embarcaron en una larga batalla legal sobre los derechos de patente en la que finalmente Edison obtuvo todos los derechos de la invención del micrófono de carbón.
Este tipo de micrófonos han sido muy utilizados en telefonía y porteros automáticos, porque su respuesta en frecuencia, entre 200 y 3.000 Hz, es ideal para captar la voz humana. Sin embargo, su uso en otras aplicaciones como la radiodifusión ha sido más bien escaso, ya que generan bastante ruido y su respuesta en frecuencia es irregular. Por el contrario, sus principales ventajas son su gran sensibilidad, baja impedancia y bajo precio. Aunque aun siguen siendo utilizados, su fabricación prácticamente ha desaparecido debido a que desde los años 1980s los micrófonos de carbón han venido siendo reemplazados casi por completo por otros tipos de micrófonos más modernos.
(Otro invento de Edison relacionado con el carbón).


La tragedia del Maine, la guerra de Cuba y la combustión espontánea del carbón
En la noche del 15 de febrero de 1898 el acorazado norteamericano USS Maine, fondeado en La Habana, fue víctima de una violenta explosión. El navío se hundió en la rada, muriendo 266 hombres. La prensa norteamericana, bajo la consigna "remember the Maine. To hell with Spain", instigó a la opinión pública norteamericana, acusando a los españoles de haber colocado una mina bajo el casco de la nave. Así, el acto sirvió de pretexto a la entrada a la guerra de Estados Unidos contra España, y a la renuncia a la soberanía sobre las últimas colonias españolas: Cuba, Puerto Rico, Filipinas y la isla de Guam. A fin de determinar las causas de la explosión, se crearon dos comisiones de investigación, una española y otra norteamericana. Curiosamente no se consultaron expertos externos e independientes, omitiéndose también ciertas opiniones de oficiales estadounidenses como el Ingeniero Jefe de la Armada, Melville, para quien era probable que la causa de la explosión fuera el estallido fortuito de los pañoles de munición; o la del experto en municiones de la armada, Philip Alger, que sostenía que la causa probable era un incendio en los pañoles de carbón cuya combustión habría provocado la deflagración de la munición. De hecho, la combustión espontánea de las carboneras y los incendios por esta causa, eran por aquel entonces uno de los principales problemas de la armada de los Estados Unidos, que en los últimos años había sufrido cerca de 20 grandes y pequeños incendios en sus buques. Por su parte, la comisión española concluía que la explosión se debió a causas internas. No podía ser una mina, ya que no se vio ninguna columna de agua. Tampoco había peces muertos en el puerto, lo que es normal en las explosiones externas. En 1911, otra comisión americana examinó los restos reflotados del Maine para llegar a la misma conclusión que la anterior. En 1975, una investigación llevada a cabo por el Almirante Hyman Rickover examinó los restos recuperados en 1911 y concluyó que no había evidencias de una explosión externa y que la causa más probable del hundimiento fue la combustión interna y accidental de una carbonera, lo que a su vez produjo el recalentamiento y la explosión de los depósitos de municiones contiguos.
sello conmemorativo del centenario de la tragedia del Maine
Cuando el carbón se almacena en pilas, y en determinadas circunstancias, puede llegar a producirse el fenómeno de la combustión espontánea. La oxidación del carbón es un fenómeno que se produce de forma natural cuando éste se expone a la atmósfera. Así, el carbono reacciona con el oxígeno del aire: C + O2 --> CO2, esta es una reacción exotérmica que poco a poco va aumentando la temperatura de la pila de carbón pudiendo llegar a alcanzarse una temperatura crítica, en la que la oxidación es lo suficientemente rápida para que se produzca el autoencendido del carbón. Los tamaños de partícula pequeños y los ambientes calurosos favorecen la combustión espontánea de las pilas de carbón.
Por otro lado, cuando en ambientes cerrados se da una acumulación de polvos combustibles, sólidos finamente divididos en partículas como la harina, el aserrín o el polvo del carbón, puede producirse un incendio a una explosión. Para que tenga lugar una explosión de polvo se requiere una serie de condiciones satisfechas simultáneamente: (i) un polvo combustible, (ii) un tamaño de partículas que permita la propagación de la llama (< 0,5 mm), (iii) una atmósfera con oxígeno suficiente para mantener la combustión, (iv) una nube de polvo con una concentración dentro del rango de explosividad, (v) una fuente de ignición con energía suficiente para la ignición (por ejemplo una chispa). Una vez que se produce la explosión inicial, la presión del estallido puede levantar polvo acumulado en otras superficies lo que frecuentemente causa explosiones secundarias. El polvo de carbón da una explosión más violenta cuanto mayor es el contenido de volátiles. A partículas más finas corresponde mayor área superficial y mayor explosividad. El límite inferior de explosividad es la concentración mínima de polvo para que se produzca una explosión y sus valores varían de 10 a 500 g/m3.


El efecto catalítico de las cenizas de los carbones
El carbón mineral, carbón vegetal y otros materiales de carbón derivados de éstos, poseen cierta cantidad de materia inorgánica en proporciones casi siempre menores al 10 %. Esta materia orgánica suele estar compuesta por silicatos, aluminatos y diversas sales de potasio, calcio, sodio, etc., en menor proporción también podemos encontrar algunos metales pesados. En el caso del carbón mineral la materia inorgánica está asociada a la composición de las rocas en las que se encuentran la veta. La materia vegetal precursora de otros carbones también posee sustancias inorgánicas que los vegetales absorben del suelo. Dado que la forma de determinar el contenido en materia inorgánica de un carbón suele ser obteniendo las cenizas resultantes de la calcinación a elevada temperatura del mismo, se suele hacer referencia a esta materia mineral como cenizas. La materia mineral, a pesar de encontrarse en bajas proporciones en los carbones, puede tener efectos catalíticos diversos, que en ocasiones pueden ser determinantes del comportamiento de un carbón en alguna aplicación determinada, de forma particular en aquellas en las que el carbón o material carbonoso intervenga en una reacción química. El experimento que se muestra en el siguiente vídeo ilustra la importancia que puede llegar a tener este efecto catalítico de las cenizas. Cuando calentamos azúcar en presencia de aire esta se funde y no arde, ya que su temperatura de fusión está por debajo de la de ignición. Sin embargo, cuando impregnamos el azúcar en ceniza, algunos elementos contenidos en ésta última actúan como catalizadores, disminuyendo la energía de activación necesaria para que tenga lugar la combustión del azúcar con el oxígeno del aire y rebajando su temperatura de ignición por debajo de la de fusión. En estas condiciones el comportamiento es muy diferente y el azúcar arde en vez de fundir.
El Petróleo
Una Visión Sencilla de Nuestra Industria Petrolera
Origen y formación del petróleo
Exploración
Extracción
Reservas mundiales. Producción y duración
Transporte y mercados de consumo
Refino y obtención de productos
Almacenamiento
Petroquímica: Transformación de Productos Derivados
Gases licuados del petróleo. El gas natural
La importancia del petróleo en la economía mundial
El Petróleo y el Medio Ambiente
Glosario
Siglas
Unidades de Medida
Bibliografía
Origen y formación del petróleo
¿QUÉ ES EL PETRÓLEO?
El producto es un compuesto químico complejo en el que coexisten partes sólidas, líquidas y gaseosas. Lo forman, por una parte, unos compuestos denominados hidrocarburos, formados por átomos de carbono e hidrógeno y, por otra, pequeñas proporciones de nitrógeno, azufre, oxígeno y algunos metales. Se presenta de forma natural en depósitos de roca sedimentaria y sólo en lugares en los que hubo mar.
Su color es variable, entre el ámbar y el negro y el significado etimológico de la palabra petróleo es aceite de piedra, por tener la textura de un aceite y encontrarse en yacimientos de roca sedimentaria.
ORIGEN
Factores para su formación:
Ausencia de aire
Restos de plantas y animales (sobre todo, plancton marino)
Gran presión de las capas de tierra
Altas temperaturas
Acción de bacterias

LOCALIZACIÓN
Al ser un compuesto líquido, su presencia no se localiza habitualmente en el lugar en el que se generó, sino que ha sufrido previamente un movimiento vertical o lateral, filtrándose a través de rocas porosas, a veces una distancia considerable, hasta encontrar una salida al exterior –en cuyo caso parte se evapora y parte se oxida al contactar con el aire, con lo cual el petróleo en sí desaparece– o hasta encontrar una roca no porosa que le impide la salida. Entonces se habla de un yacimiento.NOTA: El petróleo no forma lagos subterráneos; siempre aparece impregnado en rocas porosas.
Estratigráficos: En forma de cuña alargada que se inserta entre dos estratos.
Anticlinal: En un repliegue del subsuelo, que almacena el petróleo en el arqueamiento del terreno.
Falla: Cuando el terreno se fractura, los estratos que antes coincidían se separan. Si el estrato que contenía petróleo encuentra entonces una roca no porosa, se forma la bolsa o yacimiento.
En las últimas décadas se ha desarrollado enormemente la búsqueda de yacimientos bajo el mar, los cuales, si bien tienen similares características que los terrestres en cuanto a estructura de las bolsas, presentan muchas mayores dificultades a la hora de su localización y, por añadidura, de su explotación.
GEOLOGÍA DEL PETRÓLEO
El petróleo no se encuentra distribuido de manera uniforme en el subsuelo hay que tener presencia de al menos cuatro condiciones básicas para que éste se acumule:
Debe existir una roca permeable de forma tal que bajo presión el petróleo pueda moverse a través de los poros microscópicos de la roca.
La presencia de una roca impermeable, que evite la fuga del aceite y gas hacia la superficie.
El yacimiento debe comportarse como una trampa, ya que las rocas impermeables deben encontrarse dispuestas de tal forma que no existan movimientos laterales de fuga de hidrocarburos.
Debe existir material orgánico suficiente y necesario para convertirse en petróleo por el efecto de la presión y temperatura que predomine en el yacimiento.
La búsqueda de petróleo o gas se enfrenta con el hecho de que la superficie de la tierra tiene una historia complicada. Los geocientíficos saben que parte de la corteza terrestre, que abarcan continentes y océanos, se han trasladado con relación a otras. Cuando los continentes se separaron, zonas que eran tierra quedaron sumergidas por el mar: esas zonas se convirtieron en lugares de deposición de rocas sedimentarias. Al producirse colisiones las enormes fuerzas originadas levantaron cadenas de montañas, estrujaron las rocas en plegamientos y las echaron unas sobre otras, para formar estructuras complejas. Algunas de éstas son favorables para la acumulación de petróleo.
Una de las estructuras más comunes es el anticlinal, cuyas capas forman un arco hacia arriba o en forma convexa, con las capas antiguas cubiertas por las más recientes y se estrechan con la profundidad. Debajo del anticlinal, puede encontrarse un yacimiento de hidrocarburos, sellado por una capa impermeable. Si se perfora un pozo a través de esta cubierta, hasta llegar al yacimiento, se puede sacar petróleo a la superficie.
Fig.2.- Trampas estratigráficas: lentes de arena donde el petróleo se encuentra impregnado entre los granos (poros). Estos lentes se encuentran rodeados por material impermeable que actúa como roca sello.
Fig.3.- Trampas estructurales: responde a fractura, fallamiento donde se desplaza un bloque respecto del otro, y a plegamiento. El petróleo se acumula en los laterales de la falla y en la cresta de los pliegues.
El petróleo no suele encontrarse en el lugar en el que se genera. La generación de petróleo se produce a partir de la materia orgánica que se encuentra en sedimentos de grano fino, como arcillas; a estos sedimentos se les llama rocas madre. Posteriormente el petróleo se traslada a sedimentos de grano más grueso, como areniscas, por medio de un proceso llamado migración; A veces el petróleo no encuentra obstáculos en su migración, por lo que sale o brota, a la superficie como un manantial (así el Hombre conoció la existencia de petróleo) o bien queda entrampado. Las trampas son sitios del subsuelo donde existen condiciones adecuadas para que se acumulen los hidrocarburos, éstas se caracterizan por la presencia de rocas porosas y permeables conocidas como rocas almacén o reservorios, donde se acumulan o almacenan los hidrocarburos bordeados de capas de rocas impermeables o rocas sello que impiden su migración.
Existen dos tipos de migración: primaria, desde la roca madre a la almacén, y secundaria, dentro de la roca almacén. Mientras que la migración primaria se produce siempre a través de cortas distancia, la secundaria se puede dar a distancias muy largas.
Los reservorios tienen tres propiedades cuyo conocimiento resultan fundamentales para conseguir el máximo rendimiento en la exploración y producción de hidrocarburos. Porosidad
La porosidad es la medida de los espacios huecos en una roca, y resulta fundamental para que ésta actúe como almacén: Porosidad = % (volumen de huecos / volumen total) x 100
La porosidad se expresa como ø. Casi todos los almacenes tienen un ø entre 5% y 30%, y la mayoría entre 10% y 20%.
Existen varios tipos de porosidad según la conexión de sus poros:
Conectada: poros conectados por un solo lado.
Interconectada: poros conectados por varios lados. Las corrientes de agua pueden desalojar el gas y el petróleo (ver saturación de hidrocarburos).
Aislada: poros aislados.

Los poros conectados e interconectados constituyen la porosidad efectiva.
Permeabilidad
Es el segundo factor importante para la existencia de un almacén. La permeabilidad (k) es la capacidad de una roca para que un fluido fluya a través de ella y se mide en darcys, que es la permeabilidad que permite a un fluido de un centipoise de viscosidad fluir a una velocidad de 1 cm/s a una presión de 1 atm/cm. Habitualmente, debido a la baja permeabilidad de las rocas, se usan los milidarcies.
La ley de Darcy sólo es válida cuando no hay reacciones química entre el fluido y la roca, y cuando hay una sola fase rellenando los poros.
La permeabilidad media de los almacenes varía entre 5 y 500 milidarcies, aunque hay depósitos de hasta 3.000 - 4.000 milidarcies.
Para ser comercial, el petróleo debe fluir a varias decenas de milidarcies.
Saturación de hidrocarburos
Debido a ciertas propiedades de los fluidos y de las rocas almacén o reservorios, es común que al menos una parte del espacio poral esté ocupado por agua. La saturación de hidrocarburos expresa el porcentaje del espacio poral que está ocupado por petróleo o gas natural.
En términos geológicos, las capas subterráneas se llaman "formaciones" y están debidamente identificadas por edad, nombre y tipo del material rocoso del cual se formaron. Esto ayuda a identificar los mantos que contienen las ansiadas rocas sedimentarias.
Las "cuencas sedimentarias" son cubetas rellenas de sedimentos, que son las únicas rocas donde se pueden generar hidrocarburos (conforme a la teoría de Engler) y donde en general se acumulan. En pocos casos se dan acumulaciones de petróleo y gas en rocas graníticas. El tamaño de estas cubetas varía en decenas de miles de kilómetros cuadrados, y el espesor generalmente es de miles de metros, alcanzando hasta 7.000 metros. Estas cubetas se encuentran rodeadas por zonas de basamento (que rara vez contienen petróleo).
TIPOS DE PETRÓLEO
Son miles los compuestos químicos que constituyen el petróleo, y, entre muchas otras propiedades, estos compuestos se diferencian por su volatilidad (dependiendo de la temperatura de ebullición). Al calentarse el petróleo, se evaporan preferentemente los compuestos ligeros (de estructura química sencilla y bajo peso molecular), de tal manera que conforme aumenta la temperatura, los componentes más pesados van incorporándose al vapor.
Las curvas de destilación TBP (del inglés "true boiling point", temperatura de ebullición real) distinguen a los diferentes tipos de petróleo y definen los rendimientos que se pueden obtener de los productos por separación directa.
La industria mundial de hidrocarburos líquidos clasifica el petróleo de acuerdo a su densidad API (parámetro internacional del Instituto Americano del Petróleo, que diferencia las calidades del crudo).
Aceite Crudo
Densidad( g/ cm3)
Densidadgrados API
Extrapesado
>1.0
10.0
Pesado
1.0 - 0.92
10.0 - 22.3
Mediano
0.92 - 0.87
22.3 - 31.1
Ligero
0.87 - 0.83
31.1 - 39
Superligero
< 0.83
> 39

Exploración
Para descubrir los lugares donde existen yacimientos de petróleo no existe un método científico exacto, sino que es preciso realizar multitud de tareas previas de estudio del terreno. Los métodos empleados, dependiendo del tipo de terreno, serán geológicos o geofísicos.
MÉTODOS GEOLÓGICOS
El primer objetivo es encontrar una roca que se haya formado en un medio propicio para la existencia del petróleo, es decir, suficientemente porosa y con la estructura geológica de estratos adecuada para que puedan existir bolsas de petróleo.
Hay que buscar, luego, una cuenca sedimentaria que pueda poseer materia orgánica enterrada hace más de diez millones de años.
Para todo ello, se realizan estudios geológicos de la superficie, se recogen muestras de terreno, se inspecciona con Rayos X, se perfora para estudiar los estratos y, finalmente, con todos esos datos se realiza la carta geológica de la región que se estudia.
Tras nuevos estudios "sobre el terreno" que determinan si hay rocas petrolíferas alcanzables mediante prospección, la profundidad a la que habría que perforar, etc., se puede llegar ya a la conclusión de si merece la pena o no realizar un pozo-testigo o pozo de exploración. De hecho, únicamente en uno de cada diez pozos exploratorios se llega a descubrir petróleo y sólo dos de cada cien dan resultados que permiten su explotación de forma rentable.
MÉTODOS GEOFÍSICOS
Cuando el terreno no presenta una estructura igual en su superficie que en el subsuelo (por ejemplo, en desiertos, en selvas o en zonas pantanosas), los métodos geológicos de estudio de la superficie no resultan útiles, por lo cual hay que emplear la Geofísica, ciencia que estudia las características del subsuelo sin tener en cuenta las de la superficie.
Aparatos como el gravímetro permiten estudiar las rocas que hay en el subsuelo. Este aparato mide las diferencias de la fuerza de la gravedad en las diferentes zonas de suelo, lo que permite determinar qué tipo de roca existe en el subsuelo.
Con los datos obtenidos se elabora un "mapa" del subsuelo que permitirá determinar en qué zonas es más probable que pueda existir petróleo.
También se emplea el magnetómetro, aparato que detecta la disposición interna de los estratos y de los tipos de roca gracias al estudio de los campos magnéticos que se crean.
Igualmente se utilizan técnicas de prospección sísmica, que estudian las ondas de sonido, su reflexión y su refracción, datos éstos que permiten determinar la composición de las rocas del subsuelo. Así, mediante una explosión, se crea artificialmente una onda sísmica que atraviesa diversos terrenos, que es refractada (desviada) por algunos tipos de roca y que es reflejada (devuelta) por otros y todo ello a diversas velocidades. Estas ondas son medidas en la superficie por sismógrafos.
Más recientemente, las técnicas sísmicas tridimensionales de alta resolución permiten obtener imágenes del subsuelo en su posición real, incluso en situaciones estructurales complejas.
Pero, con todo, la presencia de petróleo no está demostrada hasta que no se procede a la perforación de un pozo.
Extracción
Aunque en un principio se empleó el método de percusión, cuando los pozos petrolíferos estaban situados a poca profundidad y bajo rocas de gran dureza, dicha técnica desde mediados del siglo XX dejó paso al método de rotación, ya que la mayor parte del petróleo se ha determinado que se encuentra a una profundidad de entre 900 y 5.000 metros, aunque hay pozos que llegan a los 7.000 u 8.000 metros.
Método de rotación
Consiste en un sistema de tubos acoplados unos a continuación de otros que, impulsados por un motor, van girando y perforando hacia abajo. En el extremo se halla una broca o trépano con dientes que rompen la roca, cuchillas que la separan y diamantes que la perforan, dependiendo del tipo de terreno. Además, existe un sistema de polea móvil del que se suspende el conjunto de los tubos que impide que todo el peso de los tubos –los pozos tienen profundidades de miles de metros– recaiga sobre la broca.
Encamisado
Para evitar que las paredes del pozo se derrumben durante la perforación y, al mismo tiempo, la estructura de los estratos del subsuelo permanezca inalterada, según se va perforando el pozo, éste va siendo recubierto mediante unas paredes –o camisas– de acero de un grosor de entre 6 y 12 milímetros.
Aprovechamiento del Yacimiento
Los cálculos realizados históricamente permiten afirmar que habitualmente una bolsa de petróleo sólo suele ser aprovechada entre un 25% y un 50% de su capacidad total. El petróleo suele estar acompañado en las bolsas por gas. Ambos, por la profundidad a la que se hallan, están sometidos a altas presiones–el gas, por esa circunstancia, se mantiene en estado líquido–. Al llegar la broca de perforación, la rotura de la roca impermeable provoca que la presión baje, por lo que, por un lado, el gas deja de estar disuelto y se expande y el petróleo deja de tener el obstáculo de la roca impermeable y suele ser empujado por el agua salada que impregna generalmente la roca porosa que se encuentra por debajo de la bolsa de petróleo. Estas dos circunstancias hacen que el petróleo suba a la superficie.
Bombeo del Petróleo
Sin embargo, llega un momento en que la presión interna de la bolsa disminuye hasta un punto en que el petróleo deja de ascender solo -y, por otro lado, el gas, cada vez menor, deja de presionar sobre el crudo–, por lo que hay que forzarlo mediante bombas para que suba. Este bombeo se realiza hasta el momento en que el coste del sistema de extracción es mayor que la rentabilidad que se obtiene del petróleo, por lo que el pozo es abandonado.
Inyección de Agua
Para aumentar la rentabilidad de un yacimiento se suele utilizar un sistema de inyección de agua mediante pozos paralelos. Mientras que de un pozo se extrae petróleo, en otro realizado cerca del anterior se inyecta agua en la bolsa, lo que provoca que la presión no baje y el petróleo siga siendo empujado a la superficie, y de una manera más rentable que las bombas.
Este sistema permite aumentar la posibilidad de explotación de un pozo hasta, aproximadamente, un 33% de su capacidad. Dependiendo de las características del terreno, esta eficiencia llega al 60%.
Inyección de Vapor
En yacimientos con petróleo muy viscoso (con textura de cera) se utiliza la inyección de vapor, en lugar de agua, lo que permite conseguir dos efectos:
1.) Por un lado, se aumenta, igual que con el agua, la presión de la bolsa de crudo para que siga ascendiendo libremente.
2.) Por otro, el vapor reduce la viscosidad del crudo, con lo se hace más sencilla su extracción, ya que fluye más deprisa.
Extracción en el Mar
El avance en las técnicas de perforación ha permitido que se puedan desarrollar pozos desde plataformas situadas en el mar (off-shore), en aguas de una profundidad de varios cientos de metros.
En ellos, para facilitar la extracción de la roca perforada se hace circular constantemente lodo a través del tubo de perforación y un sistema de toberas en la propia broca.
Con ello, se han conseguido perforar pozos de 6.400 metros de profundidad desde el nivel del mar, lo que ha permitido acceder a una parte importante de las reservas mundiales de petróleo.
Reservas mundiales. Producción y duración
A finales de 2003, las reservas mundiales probadas de petróleo ascendían a 157.000 millones de toneladas, equivalentes a 1,15 billones de barriles.
Por Países
El 77% de esas reservas se encuentran en los 11 países pertenecientes a la Organización de Países Productores de Petróleo (OPEP) –Arabia Saudí, Argelia, Emiratos Árabes Unidos, Indonesia, Irak, Irán, Kuwait, Libia, Nigeria, Qatar y Venezuela–. El 7,5% del total mundial se encuentra en países pertenecientes a la OCDE (Organización para la Cooperación y el Desarrollo Económico), formada por 30 países entre los que se encuentran los económicamente más potentes del mundo. El resto, un 15,6%, está repartido en los demás países del mundo (entre éstos destacan, por sus reservas, Rusia y China). Esto quiere decir que el 86,3% de las reservas actualmente existentes de petróleo en el mundo se encuentran en esos 12 países.
Países del mundo con más petróleo en su subsuelo

Fuente: BP statistical review of world energy June 2004
(Datos de 2003)
Por Zonas
En el siguiente gráfico se expresan las reservas mundiales de crudo por zonas geográficas:
Es decir, que dos tercios de las reservas mundiales de petróleo se encuentran en Oriente Medio.
Sin embargo, (aunque estos datos también se incluirán en el capítulo sobre el consumo de petróleo), el porcentaje que consume cada zona no tiene nada que ver con sus reservas:
Reservas por Zonas

Oriente Medio 63,3%
Europa y Eurasia 9,2% 4.2%
Sur y Centro América 8,9%
África 8,9%
América de Norte 5,5%
Asia Pacífico 4,2%

Fuente: BP statistical review of world energy June 2004. (Datos de 2003)
Zona
Reservas % s/total
Consumo % s/total
Oriente Medio
63.3
5.9
Europa y Euroasia
9.2
25.9
Sur y Centro de América
8.9
6
África
8.9
3.3
América del Norte
5.5
30.1
Asia-Pacífico
4.2
28.8
Los dos siguientes cuadros muestran la evolución de la duración de las reservas mundiales de petróleo en el mundo en el período 1981-2003 (cuadro de la izquierda) y la duración estimada de las reservas por zonas en el año 2003 (cuadro de la derecha). En 2003 descendió ligeramente la producción global de petróleo con el consiguiente aumento de la capacidad de reservas mundiales. En la última década el ratio reservas / producción de petróleo se mantuvo en términos estables, aunque con un ligero descenso (41 en 2003 y 43,7 en 1989).
Fuente: BP statistical review of world energy June 2004 (Datos de 2003)
Transporte y Mercados de Consumo
Normalmente, los pozos petrolíferos se encuentran en zonas muy alejadas de los lugares de consumo, por lo que el transporte del crudo se convierte en un aspecto fundamental de la industria petrolera, que exige una gran inversión, tanto si el transporte se realiza mediante oleoductos, como si se realiza mediante buques especiales denominados "petroleros".
Al principio de la industria petrolífera, el petróleo generalmente se refinaba cerca del lugar de producción. A medida que la demanda fue en aumento, se consideró más conveniente transportar el crudo a las refinerías situadas en los países consumidores.
Por este motivo, el papel del transporte en la industria petrolífera es muy importante. Hay que tener en cuenta que Europa occidental importa el 97% de sus necesidades –principalmente de Africa y de Oriente Medio– y Japón, el 100%.
Los países que se autoabastecen también necesitan disponer de redes de transporte eficaces, puesto que sus yacimientos más importantes se encuentran a millares de kilómetros de los centros de tratamiento y consumo, como ocurre en Estados Unidos, Rusia, Canadá o América del Sur.
En Europa, el aprovisionamiento de zonas industriales alejadas del mar exige el equipamiento de puertos capaces de recibir los superpetroleros de 300.000 y 500.000 Tm de carga, almacenamientos para la descarga y tuberías de conducción de gran capacidad.
MEDIOS DE TRANSPORTE
Aunque todos los medios de transporte son buenos para conducir este producto (el mar, la carretera, el ferrocarril o la tubería), el petróleo crudo utiliza sobretodo dos medios de transporte masivo: los oleoductos de caudal continuo y los petroleros de gran capacidad.
Los otros medios de transporte (barcos de cabotaje, gabarras, vagones cisterna o camiones cisterna, entre otros) se utilizan, salvo casos excepcionales, como vehículos de distribución de productos terminados derivados del petróleo.
En la actualidad no hay en el comercio internacional mercancía individual cuyo transporte supere en volumen o valor al del petróleo.
La ventaja del petróleo es que su fluidez permite el transporte a granel, lo que reduce los gastos al mínimo y permite una automatización casi completa del proceso. Gracias a los adelantos técnicos de hoy en día, basta en muchos casos con hacer la conexión de tuberías y proceder a la apertura o cierre de válvulas, muchas veces de forma automática y a distancia con telecontrol.
Oleoductos
Un oleoducto es el conjunto de instalaciones que sirve de transporte por tubería de los productos petrolíferos líquidos, en bruto o refinados.
El término oleoducto comprende no sólo la tubería en sí misma, sino también las instalaciones necesarias para su explotación: depósitos de almacenamiento, estaciones de bombeo, red de transmisiones, conexiones y distribuidores, equipos de limpieza, control medioambiental, etc.
El diámetro de la tubería de un oleoducto oscila entre 10 centímetros y un metro. Los oleoductos de petróleo crudo comunican los depósitos de almacenamiento de los campos de extracción con los depósitos costeros o, directamente, con los depósitos de las refinerías.
En los países que se suministran de crudos por vía marítima, el oleoducto asegura el enlace entre los depósitos portuarios de recepción y las refinerías del interior.
En la actualidad hay en el mundo más de 1.500.000 kilómetros de tubería destinados al transporte de crudos y de productos terminados, de los cuales el 70 por ciento se utilizan para gas natural, el 20 por ciento para crudos y el 10 por ciento restante para productos terminados (carburantes).
Los Estados Unidos tienen la red de oleoductos más densa del mundo. En Europa existen cinco grandes líneas de transporte de crudo que, partiendo de los terminales marítimos de Trieste, Génova, Lavera, Rotterdam y Wilhelnshaven, llevan el petróleo a las refinerías del interior. Esta red es de 3.700 kilómetros, una extensión que se queda pequeña si se compara con los 5.500 kilómetros del oleoducto del Comecón o de la Amistad, que parte de la cuenca del Volga-Urales (600 kilómetros al este de Moscú) y que suministra crudo a Polonia, Alemania, Hungría y otros países centro europeos.
Cómo funciona un oleoducto
El petróleo circula por el interior de la conducción gracias al impulso que proporcionan las estaciones de bombeo, cuyo número y potencia están en función del volumen a transportar, de la viscosidad del producto, del diámetro de la tubería, de la resistencia mecánica y de los obstáculos geográficos a sortear. En condiciones normales, las estaciones de bombeo se encuentran situadas a 50 kilómetros unas de otras.
El crudo parte de los depósitos de almacenamiento, donde por medio de una red de canalizaciones y un sistema de válvulas se pone en marcha la corriente o flujo del producto. Desde un puesto central de control se dirigen las operaciones y los controles situados a lo largo de toda la línea de conducción. El cierre y apertura de válvulas y el funcionamiento de las bombas se regulan por mando a distancia.
Una gran obra de ingeniería
La construcción de un oleoducto supone una gran obra de ingeniería y por ello, en muchos casos, es realizada conjuntamente por varias empresas. También requiere de complicados estudios económicos, técnicos y financieros con el fin garantizar su operatividad y el menor impacto posible en el medio ambiente.El trazado debe ser recto en la medida de lo posible y, normalmente, la tubería es enterrada en el subsuelo para evitar los efectos de la dilatación. Los conjuntos de tubos se protegen contra la corrosión exterior antes de ser enterrados. Las tuberías se cubren con tierra y el terreno, tras el acondicionamiento pertinente, recupera su aspecto anterior.
Petroleros
Los petroleros son los mayores navíos de transporte que existen hoy en día en el mundo. Son inmensos depósitos flotantes que pueden llegar a medir 350 metros de largo (eslora) y alcanzar las 250.000 toneladas de peso muerto (TPM).
Actualmente se transportan por mar más de mil millones de toneladas de crudo al año en todo el mundo.
El petrolero es el medio más económico para transportar petróleo a grandes distancias y tiene la ventaja de una gran flexibilidad de utilización. Su principal característica es la división de su espacio interior en cisternas individuales, lo que permite separar los diferentestipos de petróleo o sus productos derivados.
Buque de extracción y almacenamiento de crudo.
Refino y Obtención de Productos
El petróleo, tal como se extrae del yacimiento, no tiene aplicación práctica alguna. Por ello, se hace necesario separarlo en diferentes fracciones que sí son de utilidad. Este proceso se realiza en las refinerías.Una refinería es una instalación industrial en la que se transforma el petróleo crudo en productos útiles para las personas. El conjunto de operaciones que se realizan en las refinerías para conseguir estos productos son denominados "procesos de refino".
La industria del refino tiene como finalidad obtener del petróleo la mayor cantidad posible de productos de calidad bien determinada, que van desde los gases ligeros, como el propano y el butano, hasta las fracciones más pesadas, fuelóleo y asfaltos, pasando por otros productos intermedios como las gasolinas, el gasoil y los aceites lubricantes.
El petróleo bruto contiene todos estos productos en potencia porque está compuesto casi exclusivamente de hidrocarburos, cuyos dos elementos son el carbón y el hidrógeno. Ambos elementos al combinarse entre sí pueden formar infinita variedad de moléculas y cadenas de moléculas.

Procesos de Refino
Los procesos de refino dentro de una refinería se pueden clasificar, por orden de realización y de forma general, en destilación, conversión y tratamiento.
Antes de comenzar este proceso se realiza un análisis de laboratorio del petróleo, puesto que no todos los petróleos son iguales, ni de todos se pueden extraer las mismas sustancias. A continuación se realizan una serie de refinados "piloto" donde se experimentan a pequeña escala todas las operaciones de refino. Una vez comprobados los pasos a realizar, se inicia el proceso.
Destilación
La destilación es la operación fundamental para el refino del petróleo. Su objetivo es conseguir, mediante calor, separar los diversos componentes del crudo. Cuando el crudo llega a la refinería es sometido a un proceso denominado "destilación fraccionada". En éste, el petróleo calentado es alimentado a una columna, llamada también "torre de fraccionamiento o de destilación".
El petróleo pasa primero por un calentador que alcanza una temperatura de 370ºC y posteriormente es introducido en una torre, donde comienza a circular y a evaporarse. De esta forma se separan los productos ligeros y los residuos.
Los hidrocarburos con menor masa molecular son los que se vaporizan a temperaturas más bajas y a medida que aumenta la temperatura se van evaporando las moléculas más grandes.
Las fracciones más ligeras del crudo, como son los gases y la nafta, ascienden hasta la parte superior de la torre. A medida que descendemos, nos encontramos con los productos más pesados: el queroseno, gasoil ligero, gasoil pesado. En último lugar, se encuentra el residuo de fuelóleo atmosférico.
La destilación es continua: el crudo calentado entra en la torre y las fracciones separadas salen a los diferentes niveles. Esta operación, no obstante, sólo suministra productos en bruto que deberán ser mejorados (convertidos) para su comercialización, dado que los procesos de destilación no rinden productos en la cantidad ni calidad demandas por el mercado.
En cuanto a la cantidad, las fracciones obtenidas deben estar distribuidas de forma que puedan hacer frente a las necesidades de las distintas épocas del año. En invierno, las necesidades de gasóleos y fuelóleos para calefacción serán superiores a las del verano, donde prima la producción de gasolinas.
Con respecto a la calidad, las gasolinas que provienen directamente de la destilación, no responden a las exigencias de los motores, particularmente en lo que se refiere a su índice de octanos.
Conversión
Para hacer más rentable el proceso de refino y adecuar la producción a la demanda, es necesario transformar los productos, utilizando técnicas de conversión. Los principales procedimientos de conversión son el "cracking"y el "reformado".
Los procedimientos de "cracking" o craqueo consisten en un ruptura molecular y se pueden realizar, en general, con dos técnicas: el craqueo térmico, que rompe las moléculas mediante calor, o el craqueo catalítico, que realiza la misma operación mediante un catalizador, que es una sustancia que causa cambios químicos sin que ella misma sufra modificaciones en el proceso.
Recogida de líquido
Tratamiento
En general, los productos obtenidos en los procesos anteriores no se pueden considerar productos finales. Antes de su comercialización deben ser sometidos a diferentes tratamientos para eliminar o transformar los compuestos no deseados que llevan consigo. Estos compuestos son, principalmente, derivados del azufre.
Con este último proceso, las refinerías obtienen productos que cumplen con las normas y especificaciones del mercado. El proceso de craqueo catalítico, antes mencionado, permite la producción de muchos hidrocarburos diferentes que luego pueden recombinarse mediante la alquilación, la isomerización o reformación catalítica para fabricar productos químicos y combustibles de elevado octanaje para motores especializados.
La fabricación de estos productos ha dado origen a una gigantesca industria petroquímica que produce alcoholes, detergentes, caucho sintético, glicerina, fertilizantes, azufre, disolventes, materias primas para fabricar medicinas, nailon, plásticos, pinturas, poliésteres, aditivos y complementos alimenticios, explosivos, tintes y materiales aislantes, así como otros componentes para la producción de abonos. Las plantas de tratamiento más usuales son: MTBE, para mejorar la calidad de la gasolina, alquilación, para reducir los derivados de plomo, e isomerización, para obtener productos de alto índice de octano que son utilizados para las gasolinas.
PORCENTAJES DE LOS DISTINTOS PRODUCTOS REFINADOS
En 1920, un barril de crudo, que contiene 159 litros, producía 41,5 litros de gasolina, 20 litros de queroseno, 77 litros de gasoil y destilados y 20 litros de destilados más pesados.
Hoy un barril de crudo produce 79,5 litros de gasolina, 11,5 de combustible para reactores, 34 litros de gasoil y destilados, 15 litros de lubricantes y 11,5 litros de residuos más pesados.
DISTRIBUCIÓN DE LOS PRODUCTOS DERIVADOS DEL PETRÓLEO
Los productos derivados del petróleo alimentan no sólo a otras industrias, sino, sobre todo, a los consumidores industriales o privados. Al principio resultaba más económico situar las refinerías junto a las explotaciones petrolíferas, mientras que ahora, los progresos realizados en la técnica de los oleoductos han dado lugar a una evolución que conduce a instalar las refinerías cerca de los grandes centros de consumo.
Una vez obtenidos los derivados petrolíferos, las empresas deben distribuir sus productos a los clientes. En general, estos productos salen de las refinerías a granel, aunque algunos se envasan en latas o bidones, listos para su uso. Los grandes consumidores, como las eléctricas o las industrias químicas, reciben el suministro directamente de la refinería, por oleoducto o por carretera. Los consumidores de menos cantidades son abastecidos, generalmente, desde centros de almacenamiento y distribución.
Aunque los derivados del petróleo forman una gama muy variada, el 90% de ellos se destinan a satisfacer las necesidades energéticas del mundo. Es decir, estamos hablando de los combustibles.
Principales productos derivados del petróleo
Gases del petróleo (butano, propano)
Gasolinas para automóviles (sin plomo, de 98 octanos)
Combustibles para aviones (alto octanaje, querosenos)
Gasóleos (para automóviles, para calefacción)
Fuelóleos (combustible para buques, para la industria)
Otros derivados
Aceites (lubricantes, grasas)
Asfaltos (para carreteras, pistas deportivas)
Aditivos (para mejorar combustibles líquidos y lubricantes)
GAS NATURAL

El gas natural es una mezcla de gases que se encuentra frecuentemente en yacimientos fósiles, no-asociado (solo), disuelto o asociado con (acompañando al) petróleo o en depósitos de carbón. Aunque su composición varía en función del yacimiento del que se extrae, está compuesto principalmente por metano en cantidades que comúnmente pueden superar el 90 ó 95% (p. ej., el gas no-asociado del pozo West Sole en el Mar del Norte), y suele contener otros gases como nitrógeno, etano, CO2, H2S, butano, propano, mercaptanos y trazas de hidrocarburos más pesados. Como ejemplo de contaminantes cabe mencionar el gas no-asociado de Kapuni (NZ) que contiene hasta 49% de CO2. Como fuentes adicionales de este recurso natural, se están investigando los yacimientos de hidratos de metano que, según estimaciones, pueden suponer una reserva energética muy superiores a las actuales de gas natural.
Puede obtenerse también con procesos de descomposición de restos orgánicos (basuras, vegetales - gas de pantanos) en las plantas de tratamiento de estos restos (depuradoras de aguas residuales urbanas, plantas de procesado de basuras, de alpechines, etc.). El gas obtenido así se llama biogás.
El gas natural que se obtiene debe ser procesado para su uso comercial o doméstico. Algunos de los gases que forman parte del gas natural extraído se separan de la mezcla porque no tienen capacidad energética (nitrógeno o CO2) o porque pueden depositarse en las tuberías usadas para su distribución debido a su alto punto de ebullición. Si el gas será criogénicamente licuado para su almacenamiento, el dióxido de carbono (CO2) solidificaría interfiriendo con el proceso criogénico. El CO2 puede ser determinado por los procedimientos ASTM D 1137 o ASTM D 1945. El propano, butano e hidrocarburos más pesados en comparación con el gas natural son extraídos, puesto que su presencia puede causar accidentes durante la combustión del gas natural. El vapor de agua también se elimina por estos motivos y porque a temperaturas cercanas a la temperatura ambiente y presiones altas forma hidratos de metano que pueden obstruir los gasoductos. Los compuestos de azufre son eliminados hasta niveles muy bajos para evitar corrosión y olores perniciosos, así como para reducir las emisiones de compuestos causantes de lluvia ácida. La detección y la medición de H2S se puede realizar con los métodos ASTM D2385 o ASTM D 2725. Para uso doméstico, al igual que al butano, se le añaden trazas de compuestos de la familia de los mercaptano entre ellos el metil-mercaptano, para que sea fácil detectar una fuga de gas y evitar su ignición espontánea.
Contenido[ocultar]
1 Generación de CO2
2 Generación de energía
3 Véase también
4 Enlaces externos
//

Generación de CO2 [editar]
La combustión del gas natural, al ser un combustible fósil, produce un aporte neto de CO2 a la atmósfera. Esto le diferencia de otros combustibles más sostenibles como la biomasa, donde la tasa de carbono orgánico producido por unidad de carbono inorgánico emitido durante su combustión es casi igual a uno. Sin embargo, el gas natural produce mucho menos CO2 que otros combustibles como los derivados del petróleo, y sobre todo el carbón. Además es un combustible que se quema más limpia y eficazmente.
La razón por la cual produce poco CO2 es que el principal componente, metano, contiene cuatro átomos de hidrógeno y uno de carbono.
Como ventaja añadida es un combustible más versátil, que puede utilizar en sistemas de generación más eficientes como el ciclo combinado o la pila de combustible y su obtención es más sencilla en comparación con otros combustibles. Sin embargo, su contenido energético por unidad de volumen es bajo en comparación con otros combustibles.
Se encuentra concentrado en las mismas bolsas y huecos subterráneos que el petróleo por lo que tarda también mucho tiempo en producirse.

Generación de energía [editar]
El gas natural puede ser empleado para producir hidrógeno que se puede utilizar en los vehículos de hidrógeno.
1 Nm3 (Normámetro cubico,metro cúbico en condiciones normales, 0ºC de temperatura y 1 atmósfera de presión) de gas natural produce aproximadamente 10,4 kWh.
ENERGIA NUCLEAR

Energía nuclear

Contenido de la página:
Obtención de energía por fisión nuclear convencional
Producción de electricidad en la central nuclear
Medidas de seguridad
Repercusiones ambientales de la energía nuclear
Problemas de contaminación radiactiva
Almacenamiento de los residuos radiactivos
Fusión nuclear
Páginas dependientes:
Accidentes nucleares
La energía nuclear procede de reacciones de fisión o fusión de átomos en las que se liberan gigantescas cantidades de energía que se usan para producir electricidad.
En 1956 se puso en marcha, en Inglaterra, la primera planta nuclear generadora de electricidad para uso comercial. En 1990 había 420 reactores nucleares comerciales en 25 países que producían el 17% de la electricidad del mundo.
En los años cincuenta y sesenta esta forma de generar energía fue acogida con entusiasmo, dado el poco combustible que consumía (con un solo kilo de uranio se podía producir tanta energía como con 1000 toneladas de carbón). Pero ya en la década de los 70 y especialmente en la de los 80 cada vez hubo más voces que alertaron sobre los peligros de la radiación, sobre todo en caso de accidentes. El riesgo de accidente grave en una central nuclear bien construida y manejada es muy bajo, pero algunos de estos accidentes, especialmente el de Chernobyl (1986) que sucedió en una central de la URSS construida con muy deficientes medidas de seguridad y sometida a unos riesgos de funcionamiento alocados, han hecho que en muchos países la opinión pública mayoritariamente se haya opuesto a la continuación o ampliación de los programas nucleares. Además ha surgido otro problema de difícil solución: el del almacenamiento de los residuos nucleares de alta actividad.
Obtención de energía por fisión nuclear convencional.
El sistema más usado para generar energía nuclear utiliza el uranio como combustible. En concreto se usa el isótopo 235 del uranio que es sometido a fisión nuclear en los reactores. En este proceso el núcleo del átomo de uranio (U-235) es bombardeado por neutrones y se rompe originándose dos átomos de un tamaño aproximadamente mitad del de uranio y liberándose dos o tres neutrones que inciden sobre átomos de U-235 vecinos, que vuelven a romperse, originándose una reacción en cadena.
La fisión controlada del U-235 libera una gran cantidad de energía que se usa en la planta nuclear para convertir agua en vapor. Con este vapor se mueve una turbina que genera electricidad.
El mineral de uranio se encuentra en la naturaleza en cantidades limitadas. Es por tanto un recurso no renovable. Suele hallarse casi siempre junto a rocas sedimentarias. Hay depósitos importantes de este mineral en Norteamérica (27,4% de las reservas mundiales), Africa (33%) y Australia (22,5%).
El mineral del uranio contiene tres isótopos: U-238 (9928%), U-235 (0,71%) y U-234 (menos que el 0,01%). Dado que el U-235 se encuentra en una pequeña proporción, el mineral debe ser enriquecido (purificado y refinado), hasta aumentar la concentración de U-235 a un 3%, haciéndolo así útil para la reacción.
El uranio que se va a usar en el reactor se prepara en pequeñas pastillas de dióxido de uranio de unos milímetros, cada una de las cuales contiene la energía equivalente a una tonelada de carbón. Estas pastillas se ponen en varillas, de unos 4 metros de largo, que se reúnen en grupos de unas 50 a 200 varillas. Un reactor nuclear típico puede contener unas 250 de estas agrupaciones de varillas.
Producción de electricidad en la central nuclear
Una central nuclear tiene cuatro partes:
El reactor en el que se produce la fisión
El generador de vapor en el que el calor producido por la fisión se usa para hacer hervir agua
La turbina que produce electricidad con la energía contenida en el vapor
El condensador en el cual se enfría el vapor, convirtiéndolo en agua líquida. La reacción nuclear tiene lugar en el reactor, en el están las agrupaciones de varillas de combustible intercaladas con unas decenas de barras de control que están hechas de un material que absorbe los neutrones. Introduciendo estas barras de control más o menos se controla el ritmo de la fisión nuclear ajustándolo a las necesidades de generación de electricidad.
En las centrales nucleares habituales hay un circuito primario de agua en el que esta se calienta por la fisión del uranio. Este circuito forma un sistema cerrado en el que el agua circula bajo presión, para que permanezca líquida a pesar de que la temperatura que alcanza es de unos 293ºC.
Con el agua del circuito primario se calienta otro circuito de agua, llamado secundario. El agua de este circuito secundario se transforma en vapor a presión que es conducido a una turbina. El giro de la turbina mueve a un generador que es el que produce la corriente eléctrica.
Finalmente, el agua es enfriada en torres de enfriamiento, o por otros procedimientos.
Esquema del funcionamiento de una central nuclear" src="http://www.tecnun.es/asignaturas/Ecologia/Hipertexto/07Energ/07-5Cen.jpg" width=466 border=1>
Figura 7-5 > Esquema del funcionamiento de una central nuclear
Medidas de seguridad
En las centrales nucleares habituales el núcleo del reactor está colocado dentro de una vasija gigantesca de acero diseñada para que si ocurre un accidente no salga radiación al ambiente. Esta vasija junto con el generador de vapor están colocados en un edificio construido con grandes medidas de seguridad con paredes de hormigón armado de uno a dos metros de espesor diseñadas para soportar terremotos, huracanes y hasta colisiones de aviones que chocaran contra él.
Repercusiones ambientales de la energía nuclear
Una de las ventajas que los defensores de la energía nuclear le encuentran es que es mucho menos contaminante que los combustibles fósiles. Comparativamente las centrales nucleares emiten muy pocos contaminantes a la atmósfera.
Los que se oponen a la energía nuclear argumentan que el hecho de que el carbón y, en menor medida el petróleo y el gas, sean sucios no es un dato a favor de las centrales nucleares. Que lo que hay que lograr es que se disminuyan las emisiones procedentes de las centrales que usan carbón y otros combustibles fósiles, lo que tecnológicamente es posible, aunque encarece la producción de electricidad.
Problemas de contaminación radiactiva
En una central nuclear que funciona correctamente la liberación de radiactividad es mínima y perfectamente tolerable ya que entra en los márgenes de radiación natural que habitualmente hay en la biosfera.
El problema ha surgido cuando han ocurrido accidentes en algunas de las más de 400 centrales nucleares que hay en funcionamiento. Una planta nuclear típica no puede explotar como si fuera una bomba atómica, pero cuando por un accidente se producen grandes temperaturas en el reactor, el metal que envuelve al uranio se funde y se escapan radiaciones. También puede escapar, por accidente, el agua del circuito primario, que está contenida en el reactor y es radiactiva, a la atmósfera.
La probabilidad de que ocurran estos accidentes es muy baja, pero cuando suceden sus consecuencias son muy graves, porque la radiactividad produce graves daños. Y, de hecho ha habido accidentes graves. Dos han sido más recientes y conocidos. El de Three Mile Island, en Estados Unidos, y el de Chernobyl, en la antigua URSS.
Almacenamiento de los residuos radiactivos
Con los adelantos tecnológicos y la experiencia en el uso de las centrales nucleares, la seguridad es cada vez mayor, pero un problema de muy difícil solución permanece: el almacenamiento a largo plazo de los residuos radiactivos que se generan en las centrales, bien sea en el funcionamiento habitual o en el desmantelamiento, cuando la central ya ha cumplido su ciclo de vida y debe ser cerrada.
Fusión nuclear
Cuando dos núcleos atómicos (por ejemplo de hidrógeno) se unen para formar uno mayor (por ejemplo helio) se produce una reacción nuclear de fusión. Este tipo de reacciones son las que se están produciendo en el sol y en el resto de las estrellas, emitiendo gigantescas cantidades de energía.
Muchas personas que apoyan la energía nuclear ven en este proceso la solución al problema de la energía, pues el combustible que requiere es el hidrógeno, que es muy abundante. Además es un proceso que, en principio, produce muy escasa contaminación radiactiva.
La principal dificultad es que estas reacciones son muy dificiles de controlar porque se necesitan temperaturas de decenas de millones de grados centígrados para inducir la fusión y todavía, a pesar de que se está investigando con mucho interés, no hay reactores de fusión trabajando en ningún sitio.
Fisión nuclear del plutonio.
El Uranio 238, que es el principal componente del mineral uranio y además es un subproducto de la fisión del U-235, puede ser convertido en Plutonio, Pu-239, un isótopo artificial que es fisionable y se puede usar como combustible. De esta forma se multiplica por mucho la capacidad de obtener energía del uranio. Por ejemplo, si el U-238 almacenado en los cementerios nucleares de los Estados Unidos se convirtiera en plutonio, podría suministrar toda la electricidad que ese país va a necesitar en los próximos 100 años.
Pero la tecnología necesaria para este proceso tiene muchos riesgos y problemas, lo que hace que en este momento esté muy poco extendido su uso. Además, el Plutonio no se usa solo para la obtención de energía por fisión nuclear, sino que también es el material con el que se fabrican las armas nucleares, y muchos países instalarían plantas de obtención de plutonio, no para usarlo como combustible, sino, sobre todo, para fabricar armas nucleares, con el riesgo que supone la multiplicación de este tipo de armas.

Accidentes nucleares
Three Mile Island
Three Mile Island es una central nuclear de Estados Unidos en la que en 1979 tuvo lugar el peor accidente sufrido por un reactor nuclear en ese país. El núcleo del reactor sufrió una fusión parcial y gracias al buen funcionamiento del edificio protector solo hubo un mínimo escape de la peligrosa radiactividad, que no causó daños de ningún tipo. Se demostró que las medidas de seguridad de las centrales bien construidas funcionan correctamente
Sin embargo la situación fue peligrosa y el recelo de la opinión pública frente a las centrales nucleares aumentó mucho como consecuencia de ese accidente. Como contrapartida positiva, a raíz de este accidente se incrementaron las medidas de seguridad en las centrales y sus alrededores, incluyendo los planes de evacuación de las áreas que rodean a la central.
Chernobyl
En la central nuclear de Chernobyl, en la antigua Unión Soviética, tuvo lugar, el 26 de abril de 1986, lo que ha sido el peor accidente que nunca ha ocurrido en una planta nuclear. Ese día unas explosiones en uno de los reactores nucleares arrojaron grandes cantidades de material radiactivo a la atmósfera. Esta radiación no solo afectó a las cercanías sino que se extendió por grandes extensiones del Hemisferio Norte, afectando especialmente a los países de la antigua URSS y a los del Noreste de Europa.
Intensidad de la radiación en Europa como consecuencia del accidente de Chernobyl" src="http://www.tecnun.es/asignaturas/Ecologia/Hipertexto/07Energ/07-6Che.jpg" width=401 border=1>
Figura 7-6 > Intensidad de la radiación en Europa como consecuencia del accidente de Chernobyl
Como consecuencia de este accidente muchas personas sufrieron gravísimas exposiciones a la radiactividad y muchos murieron y morirán. Mas de 300 000 personas tuvieron que ser evacuadas de los alrededores de la central.
Para intentar paliar los efectos del accidente la central ha sido encapsulada en 300 000 toneladas de hormigón y varios edificios y grandes cantidades de suelo han tenido que ser descontaminados.
Aunque se han hecho grandes labores de limpieza toda esa zona tiene que enfrentarse con grandes problemas a medio y largo plazo. Entre el 15 y el 20% de las tierras agrícolas y de los bosques de Bielorrusia están tan contaminados que no se podrán usar durante los próximos cien años. Los casos de leucemia han aumentado notablemente y la salud de unos 350 000 ucranianos está siendo examinada continuamente para detectar lo antes posible las muy probables secuelas de la exposición a grandes dosis de radiactividad.
Dos hechos tuvieron especial influencia en este desastre. Por una parte el diseño de la planta, en el que el reactor no está alojado en un edificio protector y es muy inestable a baja potencia. De hecho estos reactores no se usan en los países occidentales por su falta de seguridad. Otro segundo punto fue la falta de capacitación científica y técnica de los responsables de la central, que actuaron con una irresponsabilidad increíble. Esta catástrofe, lo mismo que otros muchos desastres ambientales en la antigua URSS y en su área de influencia, están directamente relacionados con los graves defectos sociales, económicos y humanos del sistema comunista que ocultaba sistemáticamente la verdad sobre su tecnología y los riesgos y daños de todo tipo, creando una imagen de la realidad falsa y totalmente manipulada.

Datos personales

trabajo de historia de animales